Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(31): E6322-E6331, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28716908

RESUMEN

In physiological settings, all nucleic acids motor proteins must travel along substrates that are crowded with other proteins. However, the physical basis for how motor proteins behave in these highly crowded environments remains unknown. Here, we use real-time single-molecule imaging to determine how the ATP-dependent translocase RecBCD travels along DNA occupied by tandem arrays of high-affinity DNA binding proteins. We show that RecBCD forces each protein into its nearest adjacent neighbor, causing rapid disruption of the protein-nucleic acid interaction. This mechanism is not the same way that RecBCD disrupts isolated nucleoprotein complexes on otherwise naked DNA. Instead, molecular crowding itself completely alters the mechanism by which RecBCD removes tightly bound protein obstacles from DNA.


Asunto(s)
Replicación del ADN/fisiología , ADN/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Exodesoxirribonucleasa V/metabolismo , Nucleoproteínas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Microscopía Fluorescente , Método de Montecarlo
2.
DNA Repair (Amst) ; 20: 94-109, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24598576

RESUMEN

A fundamental feature of many nucleic-acid binding proteins is their ability to move along DNA either by diffusion-based mechanisms or by ATP-hydrolysis driven translocation. For example, most site-specific DNA-binding proteins must diffuse to some extent along DNA to either find their target sites, or to otherwise fulfill their biological roles. Similarly, nucleic-acid translocases such as helicases and polymerases must move along DNA to fulfill their functions. In both instances, the proteins must also be capable of moving in crowded environments while navigating through DNA-bound obstacles. These types of behaviors can be challenging to analyze by bulk biochemical methods because of the transient nature of the interactions, and/or heterogeneity of the reaction intermediates. The advent of single-molecule methodologies has overcome some of these problems, and has led to many new insights into the mechanisms that contribute to protein motion along DNA. We have developed DNA curtains as a tool to facilitate single molecule observations of protein-nucleic acid interactions, and we have applied these new research tools to systems involving both diffusive-based motion as well as ATP directed translocation. Here we highlight these studies by first discussing how diffusion contributes to target searches by proteins involved in post-replicative mismatch repair. We then discuss DNA curtain assays of two different DNA translocases, RecBCD and FtsK, which participate in homologous DNA recombination and site-specific DNA recombination, respectively.


Asunto(s)
ADN/química , Exodesoxirribonucleasa V/química , Microscopía de Fuerza Atómica/métodos , Movimiento (Física) , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/química , Animales , Humanos , Microscopía Fluorescente/métodos , Reparación del ADN por Recombinación
3.
Nat Struct Mol Biol ; 19(6): 628-32, 2012 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-22562137

RESUMEN

A major clinical problem in the use of cisplatin to treat cancers is tumor resistance. DNA polymerase η (Pol-η) is a crucial polymerase that allows cancer cells to cope with the cisplatin-DNA adducts that are formed during chemotherapy. We present here a structure of human Pol-η inserting deoxycytidine triphosphate (dCTP) opposite a cisplatin intrastrand cross-link (PtGpG). We show that the specificity of human Pol-η for PtGpG derives from an active site that is open to permit Watson-Crick geometry of the nascent PtGpG-dCTP base pair and to accommodate the lesion without steric hindrance. This specificity is augmented by the residues Gln38 and Ser62, which interact with PtGpG, and Arg61, which interacts with the incoming dCTP. Collectively, the structure provides a basis for understanding how Pol-η in human cells can tolerate the DNA damage caused by cisplatin chemotherapy and offers a framework for the design of inhibitors in cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Aductos de ADN/síntesis química , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos de Desoxicitosina/metabolismo , Dominio Catalítico , Cisplatino/síntesis química , Cisplatino/química , Cisplatino/metabolismo , Cristalografía por Rayos X , Aductos de ADN/química , Aductos de ADN/metabolismo , Nucleótidos de Desoxicitosina/química , Humanos , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Especificidad por Sustrato
4.
J Mol Biol ; 415(4): 627-34, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22154937

RESUMEN

Pre-steady-state kinetic studies on Y-family DNA polymerase η (Polη) have suggested that the polymerase undergoes a rate-limiting conformational change step before the phosphoryl transfer of the incoming nucleotide to the primer terminus. However, the nature of this rate-limiting conformational change step has been unclear, due in part to the lack of structural information on the Polη binary complex. We present here for the first time a crystal structure of human Polη (hPolη) in binary complex with its DNA substrate. We show that the hPolη domains move only slightly on dNTP binding and that the polymerase by and large is pre-aligned for dNTP binding and catalysis. We also show that there is no major reorientation of the DNA from a nonproductive to a productive configuration and that the active site is devoid of metals in the absence of dNTP. Together, these observations lead us to suggest that the rate-limiting conformational change step in the Polη replication cycle likely corresponds to a rate-limiting entry of catalytic metals in the active site.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/fisiología , Desoxirribonucleótidos/metabolismo , Sitios de Unión , Catálisis , Cristalografía por Rayos X , ADN Polimerasa Dirigida por ADN/genética , Desoxirribonucleótidos/química , Humanos , Modelos Biológicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
5.
J Mol Biol ; 408(2): 252-61, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21354175

RESUMEN

Exposure of DNA to UV radiation causes covalent linkages between adjacent pyrimidines. The most common lesion found in DNA from these UV-induced linkages is the cis-syn cyclobutane pyrimidine dimer. Human DNA polymerase κ (Polκ), a member of the Y-family of DNA polymerases, is unable to insert nucleotides opposite the 3'T of a cis-syn T-T dimer, but it can efficiently extend from a nucleotide inserted opposite the 3'T of the dimer by another DNA polymerase. We present here the structure of human Polκ in the act of inserting a nucleotide opposite the 5'T of the cis-syn T-T dimer. The structure reveals a constrained active-site cleft that is unable to accommodate the 3'T of a cis-syn T-T dimer but is remarkably well adapted to accommodate the 5'T via Watson-Crick base pairing, in accord with a proposed role for Polκ in the extension reaction opposite from cyclobutane pyrimidine dimers in vivo.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , Dímeros de Pirimidina/química , Timina/química , Emparejamiento Base , Cristalografía por Rayos X , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Modelos Químicos , Conformación Proteica , Dímeros de Pirimidina/metabolismo , Timina/metabolismo , Rayos Ultravioleta
6.
Structure ; 18(11): 1463-70, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21070945

RESUMEN

7,8-dihydro-8-oxoguanine (8-oxoG) adducts are formed frequently by the attack of oxygen-free radicals on DNA. They are among the most mutagenic lesions in cells because of their dual coding potential, where, in addition to normal base-pairing of 8-oxoG(anti) with dCTP, 8-oxoG in the syn conformation can base pair with dATP, causing G to T transversions. We provide here for the first time a structural basis for the error-free replication of 8-oxoG lesions by yeast DNA polymerase η (Polη). We show that the open active site cleft of Polη can accommodate an 8-oxoG lesion in the anti conformation with only minimal changes to the polymerase and the bound DNA: at both the insertion and post-insertion steps of lesion bypass. Importantly, the active site geometry remains the same as in the undamaged complex and provides a basis for the ability of Polη to prevent the mutagenic replication of 8-oxoG lesions in cells.


Asunto(s)
Reparación del ADN , Replicación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Modelos Moleculares , Conformación Proteica , Saccharomyces cerevisiae/enzimología , Dominio Catalítico/genética , Cristalografía , Aductos de ADN/química , Aductos de ADN/genética , Guanina/análogos & derivados , Guanina/química
7.
Nature ; 465(7301): 1039-43, 2010 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-20577207

RESUMEN

DNA polymerase eta (Poleta) is unique among eukaryotic polymerases in its proficient ability for error-free replication through ultraviolet-induced cyclobutane pyrimidine dimers, and inactivation of Poleta (also known as POLH) in humans causes the variant form of xeroderma pigmentosum (XPV). We present the crystal structures of Saccharomyces cerevisiae Poleta (also known as RAD30) in ternary complex with a cis-syn thymine-thymine (T-T) dimer and with undamaged DNA. The structures reveal that the ability of Poleta to replicate efficiently through the ultraviolet-induced lesion derives from a simple and yet elegant mechanism, wherein the two Ts of the T-T dimer are accommodated in an active site cleft that is much more open than in other polymerases. We also show by structural, biochemical and genetic analysis that the two Ts are maintained in a stable configuration in the active site via interactions with Gln 55, Arg 73 and Met 74. Together, these features define the basis for Poleta's action on ultraviolet-damaged DNA that is crucial in suppressing the mutagenic and carcinogenic consequences of sun exposure, thereby reducing the incidence of skin cancers in humans.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Saccharomyces cerevisiae/enzimología , Neoplasias Cutáneas/enzimología , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Daño del ADN , ADN Polimerasa Dirigida por ADN/genética , Humanos , Cinética , Modelos Moleculares , Mutación Missense , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , Dímeros de Pirimidina/química , Dímeros de Pirimidina/metabolismo , Saccharomyces cerevisiae/genética , Neoplasias Cutáneas/genética , Relación Estructura-Actividad , Xerodermia Pigmentosa/enzimología , Xerodermia Pigmentosa/genética
8.
PLoS One ; 4(6): e5766, 2009 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-19492058

RESUMEN

BACKGROUND: Oxygen-free radicals formed during normal aerobic cellular metabolism attack bases in DNA and 7,8-dihydro-8-oxoguanine (8-oxoG) is one of the major lesions formed. It is amongst the most mutagenic lesions in cells because of its dual coding potential, wherein 8-oxoG(syn) can pair with an A in addition to normal base pairing of 8-oxoG(anti) with a C. Human DNA polymerase kappa (Polkappa) is a member of the newly discovered Y-family of DNA polymerases that possess the ability to replicate through DNA lesions. To understand the basis of Polkappa's preference for insertion of an A opposite 8-oxoG lesion, we have solved the structure of Polkappa in ternary complex with a template-primer presenting 8-oxoG in the active site and with dATP as the incoming nucleotide. METHODOLOGY AND PRINCIPAL FINDINGS: We show that the Polkappa active site is well-adapted to accommodate 8-oxoG in the syn conformation. That is, the polymerase and the bound template-primer are almost identical in their conformations to that in the ternary complex with undamaged DNA. There is no steric hindrance to accommodating 8-oxoG in the syn conformation for Hoogsteen base-paring with incoming dATP. CONCLUSIONS AND SIGNIFICANCE: The structure we present here is the first for a eukaryotic translesion synthesis (TLS) DNA polymerase with an 8-oxoG:A base pair in the active site. The structure shows why Polkappa is more efficient at inserting an A opposite the 8-oxoG lesion than a C. The structure also provides a basis for why Polkappa is more efficient at inserting an A opposite the lesion than other Y-family DNA polymerases.


Asunto(s)
Adenosina Trifosfato/química , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Guanina/análogos & derivados , Dominio Catalítico , Cristalización , ADN/química , Daño del ADN , Replicación del ADN , Radicales Libres , Guanina/química , Humanos , Cinética , Modelos Genéticos , Nucleótidos/química , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA