Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850165

RESUMEN

AIM: Given the extremely limited regeneration potential of the heart, one of the most effective strategies to reduce the prevalence and mortality of coronary artery disease is prevention. Short-chain fatty acids (SCFAs), which are by-products of beneficial probiotics, have been reported to possess cardioprotective effects. Despite their beneficial roles, delivering SCFAs and maintaining their effective concentration in plasma present major challenges. Therefore, in the present study, we aimed to devise a strategy to prevent coronary heart disease effectively by using engineered probiotics to continuously release SCFAs in vivo. METHODS AND RESULTS: We engineered a novel probiotic cocktail, EcN_TL, from the commercially available Escherichia coli Nissle 1917 strain to continuously secrete SCFAs by introducing the propionate and butyrate biosynthetic pathways. Oral administration of EcN_TL enhanced and maintained an effective concentration of SCFAs in the plasma. As a preventative strategy, we observed that daily intake of EcN_TL for 14 days prior to ischemia-reperfusion injury significantly reduced myocardial injury and improved cardiac performance compared to EcN administration. We uncovered that EcN_TL's protective mechanisms included reducing neutrophil infiltration into the infarct site and promoting the polarization of wound-healing macrophages. We further revealed that SCFAs at plasma concentration protected cardiomyocytes from inflammation by suppressing the NF-κB activation pathway. CONCLUSIONS: These data provide strong evidence to support the use of SCFA-secreting probiotics to prevent coronary heart disease. Since SCFAs also play a key role in other metabolic diseases, EcN_TL can potentially be used to treat a variety of other diseases.

2.
Nat Commun ; 15(1): 2564, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519491

RESUMEN

Engineered human cardiac tissues have been utilized for various biomedical applications, including drug testing, disease modeling, and regenerative medicine. However, the applications of cardiac tissues derived from human pluripotent stem cells are often limited due to their immaturity and lack of functionality. Therefore, in this study, we establish a perfusable culture system based on in vivo-like heart microenvironments to improve human cardiac tissue fabrication. The integrated culture platform of a microfluidic chip and a three-dimensional heart extracellular matrix enhances human cardiac tissue development and their structural and functional maturation. These tissues are comprised of cardiovascular lineage cells, including cardiomyocytes and cardiac fibroblasts derived from human induced pluripotent stem cells, as well as vascular endothelial cells. The resultant macroscale human cardiac tissues exhibit improved efficacy in drug testing (small molecules with various levels of arrhythmia risk), disease modeling (Long QT Syndrome and cardiac fibrosis), and regenerative therapy (myocardial infarction treatment). Therefore, our culture system can serve as a highly effective tissue-engineering platform to provide human cardiac tissues for versatile biomedical applications.


Asunto(s)
Células Endoteliales , Células Madre Pluripotentes Inducidas , Humanos , Diferenciación Celular , Miocitos Cardíacos , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...