Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Intervalo de año de publicación
1.
Chem Biol Interact ; 346: 109581, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34302801

RESUMEN

Bothrops asper is one of the most important snake species in Central America, mainly because of its medical importance in countries like Ecuador, Panama and Costa Rica, where this species causes a high number of snakebite accidents. Several basic phospholipases A2 (PLA2s) have been previously characterized from B. asper venom, but few studies have been carried out with its acidic isoforms. In addition, since snake venom is a rich source of bioactive substances, it is necessary to investigate the biotechnological potential of its components. In this context, this study aimed to carry out the biochemical characterization of PLA2 isoforms isolated from B. asper venom and to evaluate the antiparasitic potential of these toxins. The venom and key fractions were subjected to different chromatographic steps, obtaining nine PLA2s, four acidic ones (BaspAc-I, BaspAc-II, BaspAc-III and BaspAc-IV) and five basic ones (BaspB-I, BaspB-II, BaspB-III, BaspB-IV and BaspB-V). The isoelectric points of the acidic PLA2s were also determined, which presented values ranging between 4.5 and 5. The findings indicated the isolation of five unpublished isoforms, four Asp49-PLA, corresponding to the group of acidic isoforms, and one Lys49-PLA2-like. Acidic PLA2s catalyzed the degradation of all substrates evaluated; however, for the basic PLA2s, there was a preference for phosphatidylglycerol and phosphatidic acid. The antiparasitic potential of the toxins was evaluated, and the acidic PLA2s demonstrated action against the epimastigote forms of T. cruzi and promastigote forms of L. infantum, while the basic PLA2s BaspB-II and BaspB-IV showed activity against P. falciparum. The results indicated an increase of up to 10 times in antiplasmodial activity, when the Asp49-PLA2 and Lys49-PLA2 were associated with one another, denoting synergistic action between these PLA2 isoforms. These findings correspond to the first report of synergistic antiplasmodial action for svPLA2s, demonstrating that these molecules may be important targets in the search for new antiparasitic agents.


Asunto(s)
Antiprotozoarios/farmacología , Fosfolipasas A2/química , Plasmodium falciparum/efectos de los fármacos , Venenos de Serpiente/metabolismo , Secuencia de Aminoácidos , Animales , Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación , Bothrops/metabolismo , Sinergismo Farmacológico , Punto Isoeléctrico , Leishmania infantum/efectos de los fármacos , Panamá , Pruebas de Sensibilidad Parasitaria , Fosfolipasas A2/aislamiento & purificación , Fosfolipasas A2/farmacología , Isoformas de Proteínas/química , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/farmacología , Alineación de Secuencia
2.
Curr Top Med Chem ; 19(22): 2041-2048, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31340737

RESUMEN

BACKGROUND: Functional and structural diversity of proteins of snake venoms is coupled with a wide repertoire of pharmacological effects. Snake venoms are targets of studies linked to searching molecules with biotechnological potential. METHODS: A homologue phospholipase A2 (BmatTX-IV) was obtained using two chromatographic techniques. Mass spectrometry and two-dimensional gel electrophoresis were used to determine the molecular mass and isoelectric point, respectively. By means of Edman degradation chemistry, it was possible to obtain the partial sequence of amino acids that comprise the isolated toxin. Trypanocidal, leishmanicidal and cytoxic activity against Trypanosoma cruzi, Leishmania infantum and murine fibrobasts was determinated. RESULTS: Combination of both chromatographic steps used in this study demonstrated efficacy to obtain the PLA2-Lys49. BmatTX-IV showed molecular mass and isoelectric point of 13.55 kDa and 9.3, respectively. Amino acid sequence of N-terminal region (51 residues) shows the presence of Lys49 residue at position 49, a distinctive trait of enzymatically inactive PLA2. Bothrops mattogrossensis snake venom showed IC50 values of 11.9 µg/mL against Leishmania infantum promastigotes and of 13.8 µg/mL against Trypanosoma cruzi epimastigotes, respectively. On the other hand, the venom showed a high cytotoxic activity (IC50 value of 16.7 µg/mL) against murine fibroblasts, whereas the BmatTX-IV showed IC50 value of 81.2 µg/mL. CONCLUSION: Physicochemical and biological characterization of snake venoms components is critically important, since these complex mixtures provide a source of molecules with antiparasitic potential, making further studies necessary to identify and characterize components with higher efficacy and selectivity.


Asunto(s)
Antiparasitarios/farmacología , Leishmania infantum/efectos de los fármacos , Fosfolipasas A2/farmacología , Venenos de Serpiente/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Antiparasitarios/química , Antiparasitarios/aislamiento & purificación , Bothrops , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Ratones , Paraguay , Pruebas de Sensibilidad Parasitaria , Fosfolipasas A2/química , Fosfolipasas A2/aislamiento & purificación , Venenos de Serpiente/química , Venenos de Serpiente/aislamiento & purificación , Relación Estructura-Actividad
3.
Curr Pharm Biotechnol ; 19(4): 308-335, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29929461

RESUMEN

BACKGROUND: Research involving snake venom has gradually surpassed the simple discovery of new molecules using purification and structural characterization processes, and extended to the identification of their molecular targets and the evaluation of their therapeutic potential. Nevertheless, this only became possible due to constant progress in experimental biology and protein purification approaches. OBJECTIVE: This review aims to discuss the main components of snake venoms that have been investigated for biotechnological purposes, and to discover how these promising biomolecules were obtained with the satisfactory degree of purity that have enabled such studies. Advances in purification technologies of various snake venom molecules have allowed for important discoveries of proteins and peptides with different biomedical and biotechnological applications. RESULT AND CONCLUSION: It is believed that significant experimental and computational advances will arise in similar proportions in the coming years that will allow researchers to map the molecular regions responsible for their pharmacological actions, their respective mechanisms of action and their cell targets.


Asunto(s)
Venenos de Serpiente/química , Venenos de Serpiente/farmacología , Serpientes/fisiología , Animales , Descubrimiento de Drogas , Humanos , Proteínas/química , Venenos de Serpiente/genética , Venenos de Serpiente/uso terapéutico
4.
Artículo en Inglés | MEDLINE | ID: mdl-29467796

RESUMEN

BACKGROUND: Wasp venoms constitute a molecular reservoir of new pharmacological substances such as peptides and proteins, biological property holders, many of which are yet to be identified. Exploring these sources may lead to the discovery of molecules hitherto unknown. This study describes, for the first time in hymenopteran venoms, the identification of an enzymatically inactive phospholipase A2 (PLA2) from the venom of the social wasp Polybia occidentalis. METHODS: P. occidentalis venom was fractioned by molecular exclusion and reverse phase chromatography. For the biochemical characterization of the protein, 1D and 2D SDS-PAGE were performed, along with phospholipase activity assays on synthetic substrates, MALDI-TOF mass spectrometry and sequencing by Edman degradation. RESULTS: The protein, called PocTX, was isolated using two chromatographic steps. Based on the phospholipase activity assay, electrophoresis and mass spectrometry, the protein presented a high degree of purity, with a mass of 13,896.47 Da and a basic pI. After sequencing by the Edman degradation method, it was found that the protein showed a high identity with snake venom PLA2 homologues. CONCLUSION: This is the first report of an enzymatically inactive PLA2 isolated from wasp venom, similar to snake PLA2 homologues.

5.
Int J Biol Macromol ; 107(Pt A): 1014-1022, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28951306

RESUMEN

Phospholipases A2 (PLA2s) are important enzymes present in snake venoms and are related to a wide spectrum of pharmacological effects, however the toxic potential and therapeutic effects of acidic isoforms have not been fully explored and understood. Due to this, the present study describes the isolation and biochemical characterization of two new acidic Asp49-PLA2s from Bothrops brazili snake venom, named Braziliase-I and Braziliase-II. The venom was fractionated in three chromatographic steps: ion exchange, hydrophobic interaction and reversed phase. The isoelectric point (pI) of the isolated PLA2s was determined by two-dimensional electrophoresis, and 5.2 and 5.3 pIs for Braziliase-I and II were observed, respectively. The molecular mass was determined with values ​​of 13,894 and 13,869Da for Braziliase-I and II, respectively. Amino acid sequence by Edman degradation and mass spectrometry completed 87% and 74% of the sequences, respectively for Braziliase-I and II. Molecular modeling of isolated PLA2s using acid PLA2BthA-I-PLA2 from B. jararacussu template showed high quality. Both acidic PLA2s showed no significant myotoxic activity, however they induced significant oedematogenic activity. Braziliase-I and II (100µg/mL) showed 31.5% and 33.2% of cytotoxicity on Trypanosoma cruzi and 26.2% and 19.2% on Leishmania infantum, respectively. Braziliase-I and II (10µg) inhibited 96.98% and 87.98% of platelet aggregation induced by ADP and 66.94% and 49% induced by collagen, respectively. The acidic PLA2s biochemical and structural characterization can lead to a better understanding of its pharmacological effects and functional roles in snakebites pathophysiology, as well as its possible biotechnological applications as research probes and drug leads.


Asunto(s)
Fosfolipasas A2/química , Inhibidores de Agregación Plaquetaria/química , Agregación Plaquetaria/efectos de los fármacos , Venenos de Serpiente/química , Secuencia de Aminoácidos/genética , Animales , Bothrops/genética , Leishmania infantum/efectos de los fármacos , Leishmania infantum/patogenicidad , Modelos Moleculares , Fosfolipasas A2/genética , Fosfolipasas A2/aislamiento & purificación , Fosfolipasas A2/farmacología , Inhibidores de Agregación Plaquetaria/aislamiento & purificación , Inhibidores de Agregación Plaquetaria/farmacología , Homología de Secuencia de Aminoácido , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/patogenicidad
6.
Basic Clin Pharmacol Toxicol ; 122(4): 413-423, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29067765

RESUMEN

Snake venom phospholipases A2 (PLA2 s) are responsible for numerous pathophysiological effects in snakebites; however, their biochemical properties favour antimicrobial actions against different pathogens, thus constituting a true source of potential microbicidal agents. This study describes the isolation of a Lys49 PLA2 homologue from Lachesis muta muta venom using two chromatographic steps: size exclusion and reverse phase. The protein showed a molecular mass of 13,889 Da and was devoid of phospholipase activity on an artificial substrate. The primary structure made it possible to identify an unpublished protein from L. m. muta venom, named LmutTX, that presented high identity with other Lys49 PLA2 s from bothropic venoms. Synthetic peptides designed from LmutTX were evaluated for their cytotoxic and antimicrobial activities. LmutTX was cytotoxic against C2C12 myotubes at concentrations of at least 200 µg/mL, whereas the peptides showed a low cytolytic effect. LmutTX showed antibacterial activity against Gram-positive and Gram-negative bacteria; however, S. aureusATCC 29213 and MRSA strains were more sensitive to the toxin's action. Synthetic peptides were tested on S. aureus, MRSA and P. aeruginosaATCC 27853 strains, showing promising results. This study describes for the first time the isolation of a Lys49 PLA2 from Lachesis snake venom and shows that peptides from specific regions of the sequence may constitute new sources of molecules with biotechnological potential.


Asunto(s)
Antibacterianos/farmacología , Venenos de Crotálidos/enzimología , Fosfolipasas A2/química , Viperidae , Animales , Antibacterianos/síntesis química , Cromatografía en Gel/métodos , Cromatografía de Fase Inversa/métodos , Venenos de Crotálidos/química , Diseño de Fármacos , Pruebas de Enzimas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Péptidos/síntesis química , Péptidos/farmacología , Fosfolipasas A2/aislamiento & purificación , Pseudomonas aeruginosa/efectos de los fármacos
7.
Artículo en Inglés | LILACS | ID: biblio-894164

RESUMEN

Wasp venoms constitute a molecular reservoir of new pharmacological substances such as peptides and proteins, biological property holders, many of which are yet to be identified. Exploring these sources may lead to the discovery of molecules hitherto unknown. This study describes, for the first time in hymenopteran venoms, the identification of an enzymatically inactive phospholipase A2 (PLA2) from the venom of the social wasp Polybia occidentalis. Methods: P. occidentalis venom was fractioned by molecular exclusion and reverse phase chromatography. For the biochemical characterization of the protein, 1D and 2D SDS-PAGE were performed, along with phospholipase activity assays on synthetic substrates, MALDI-TOF mass spectrometry and sequencing by Edman degradation. Results: The protein, called PocTX, was isolated using two chromatographic steps. Based on the phospholipase activity assay, electrophoresis and mass spectrometry, the protein presented a high degree of purity, with a mass of 13,896. 47 Da and a basic pI. After sequencing by the Edman degradation method, it was found that the protein showed a high identity with snake venom PLA2 homologues. Conclusion: This is the first report of an enzymatically inactive PLA2 isolated from wasp venom, similar to snake PLA2 homologues.(AU)


Asunto(s)
Animales , Avispas , Receptores de Fosfolipasa A2/aislamiento & purificación , Receptores de Fosfolipasa A2/química , Intoxicación , Espectrometría de Masas/métodos , Receptores de Fosfolipasa A2/química , Cromatografía de Fase Inversa/métodos
8.
J. venom. anim. toxins incl. trop. dis ; 24: 1-6, 2018. ilus, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1484738

RESUMEN

Background: Wasp venoms constitute a molecular reservoir of new pharmacological substances such as peptides and proteins, biological property holders, many of which are yet to be identified. Exploring these sources may lead to the discovery of molecules hitherto unknown. This study describes, for the first time in hymenopteran venoms, the identification of an enzymatically inactive phospholipase A2 (PLA2) from the venom of the social wasp Polybia occidentalis. Methods: P. occidentalis venom was fractioned by molecular exclusion and reverse phase chromatography. For the biochemical characterization of the protein, 1D and 2D SDS-PAGE were performed, along with phospholipase activity assays on synthetic substrates, MALDI-TOF mass spectrometry and sequencing by Edman degradation. Results: The protein, called PocTX, was isolated using two chromatographic steps. Based on the phospholipase activity assay, electrophoresis and mass spectrometry, the protein presented a high degree of purity, with a mass of 13,896. 47 Da and a basic pI. After sequencing by the Edman degradation method, it was found that the protein showed a high identity with snake venom PLA2 homologues. Conclusion: This is the first report of an enzymatically inactive PLA2 isolated from wasp venom, similar to snake PLA2 homologues.


Asunto(s)
Animales , /aislamiento & purificación , /química , Venenos de Avispas , Avispas/enzimología
9.
Curr Pharm Biotechnol ; 17(14): 1201-1212, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27604356

RESUMEN

Cancer, a disease that currently affects approximately 14 million people, is characterized by abnormal cell growth with altered replication capacity, which leads to the development of tumor masses without apoptotic control. Resistance to the drugs used in chemotherapy and their side effects stimulate scientific research seeking new therapies to combat this disease. Molecules from flora and fauna with cytotoxic activity against tumor cells have been studied for their potential to become a source of pharmaceutical agents. In this regard, snake venoms have a variety of proteins and peptides that have proven biotechnological potential. In several studies, antibacterial action and antitumor activity have been observed. One of the most widely studied venom components are phospholipases A2. Snake venom phospholipases A2 (svPLA2s) comprise a large class of molecules that catalyze the hydrolysis of the sn-2 position of phospholipids releasing fatty acids and lysophospholipids and are related to a broad spectrum of biotechnological activities. In addition to their specific cytotoxicity against some tumor cell lines, inhibitory activity of angiogenesis, adhesion and cell migration has been described. The antitumor activity of svPLA2s was observed both in vitro and in vivo, but little is known about the mechanism of action of these proteins in promoting this activity. In this review, the main structural and functional characteristics of svPLA2s are discussed, along with the mechanisms proposed, thus far, to explain their antitumor activity, targeting their potential use as a therapeutic alternative against cancer.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/patología , Péptidos/farmacología , Fosfolipasas A2/metabolismo , Venenos de Serpiente/enzimología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Péptidos/síntesis química
10.
Toxicon ; 106: 30-41, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26363289

RESUMEN

This study describes the biochemical and functional characterization of a new metalloproteinase named BbMP-1, isolated from Bothrops brazili venom. BbMP-1 was homogeneous on SDS-PAGE, presented molecular mass of 22,933Da and pI 6.4. The primary structure was partially elucidated with high identity with others metalloproteinases from Viperidae venoms. The enzymatic activity on azocasein was evaluated in different experimental conditions (pH, temperature). A significant reduction in enzyme activity after exposure to chelators of divalent cations (EDTA), reducing agents (DTT), pH less than 5.0 or temperatures higher than 45 °C was observed. BbMP-1 showed activity on fibrinogen degrading Aα chain quickly and to a lesser extent the Bß chain. Also demostrated to be weakly hemorrhagic, presenting however, significant myotoxic and edematogenic activity. The in vitro activity of BbMP-1 against Plasmodium falciparum showed an IC50 of 3.2 ± 2.0 µg/mL. This study may help to understand the pathophysiological effects induced by this group of toxin and their participation in the symptoms observed in cases of snake envenomation. Moreover, this result is representative for this group of proteins and shows the biotechnological potential of BbMP-1 by the demonstration of its antiplasmodial activity.


Asunto(s)
Antiparasitarios/farmacología , Bothrops/metabolismo , Venenos de Crotálidos/enzimología , Metaloproteasas/química , Plasmodium falciparum/efectos de los fármacos , Animales , Antiparasitarios/química , Antiparasitarios/aislamiento & purificación , Caseínas/química , Caseínas/metabolismo , Electroforesis en Gel de Poliacrilamida , Fibrinógeno/química , Fibrinógeno/metabolismo , Concentración de Iones de Hidrógeno , Concentración 50 Inhibidora , Masculino , Metaloproteasas/aislamiento & purificación , Metaloproteasas/farmacología , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Temperatura
11.
Toxicon ; 103: 1-11, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26095535

RESUMEN

The Micrurus genus is the American representative of Elapidae family. Micrurus spixii is endemic of South America and northern states of Brazil. Elapidic venoms contain neurotoxins that promote curare-mimetic neuromuscular blockage. In this study, biochemical and functional characterizations of M. spixii crude venom were performed and a new neurotoxic phospholipase A2 called MsPLA2-I was isolated. M. spixii crude venom caused severe swelling in the legs of tested mice and significant release of creatine kinase (CK) showing its myotoxic activity. Leishmanicidal activity against Leishmania amazonensis (IC50 1.24 µg/mL) was also observed, along with antiplasmodial activity against Plasmodium falciparum, which are unprecedented for Micrurus venoms. MsPLA2-I with a Mr 12,809.4 Da was isolated from the crude venom of M. spixii. The N-terminal sequencing of a fragment of 60 amino acids showed 80% similarity with another PLA2 from Micrurus altirostris. This toxin and the crude venom showed phospholipase activity. In a mouse phrenic nerve-diaphragm preparation, M. spixii venom and MsPLA2-I induced the blockage of both direct and indirect twitches. While the venom presented a pronounced myotoxic activity, MsPLA2-I expressed a summation of neurotoxic activity. The results of this study make M. spixii crude venom promising compounds in the exploration of molecules with microbicidal potential.


Asunto(s)
Venenos Elapídicos/química , Elapidae/metabolismo , Neurotoxinas/toxicidad , Fosfolipasas A2/toxicidad , Secuencia de Aminoácidos , Animales , Antiparasitarios/farmacología , Brasil , Creatina Quinasa/metabolismo , Concentración 50 Inhibidora , Leishmania/efectos de los fármacos , Leishmania/crecimiento & desarrollo , Ratones , Datos de Secuencia Molecular , Neurotoxinas/aislamiento & purificación , Fosfolipasas A2/aislamiento & purificación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Conformación Proteica , Toxinas Biológicas
12.
Biomed Res Int ; 2014: 920942, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24971359

RESUMEN

In this paper, we describe the purification/characterization of BmooAi, a new toxin from Bothrops moojeni that inhibits platelet aggregation. The purification of BmooAi was carried out through three chromatographic steps (ion-exchange on a DEAE-Sephacel column, molecular exclusion on a Sephadex G-75 column, and reverse-phase HPLC chromatography on a C2/C18 column). BmooAi was homogeneous by SDS-PAGE and shown to be a single-chain protein of 15,000 Da. BmooAi was analysed by MALDI-TOF Spectrometry and revealed two major components with molecular masses 7824.4 and 7409.2 as well as a trace of protein with a molecular mass of 15,237.4 Da. Sequencing of BmooAi by Edman degradation showed two amino acid sequences: IRDFDPLTNAPENTA and ETEEGAEEGTQ, which revealed no homology to any known toxin from snake venom. BmooAi showed a rather specific inhibitory effect on platelet aggregation induced by collagen, adenosine diphosphate, or epinephrine in human platelet-rich plasma in a dose-dependent manner, whereas it had little or no effect on platelet aggregation induced by ristocetin. The effect on platelet aggregation induced by BmooAi remained active even when heated to 100°C. BmooAi could be of medical interest as a new tool for the development of novel therapeutic agents for the prevention and treatment of thrombotic disorders.


Asunto(s)
Bothrops/metabolismo , Venenos de Crotálidos/aislamiento & purificación , Venenos de Crotálidos/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Bovinos , Cromatografía por Intercambio Iónico , Colágeno/farmacología , Venenos de Crotálidos/química , Epinefrina/farmacología , Humanos , Datos de Secuencia Molecular , Peso Molecular , Inhibidores de Agregación Plaquetaria/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
Biomed Res Int ; 2014: 950538, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24895632

RESUMEN

Toxins purified from the venom of spiders have high potential to be studied pharmacologically and biochemically. These biomolecules may have biotechnological and therapeutic applications. This study aimed to evaluate the protein content of Parawixia bistriata venom and functionally characterize its proteins that have potential for biotechnological applications. The crude venom showed no phospholipase, hemorrhagic, or anti-Leishmania activities attesting to low genotoxicity and discrete antifungal activity for C. albicans. However the following activities were observed: anticoagulation, edema, myotoxicity and proteolysis on casein, azo-collagen, and fibrinogen. The chromatographic and electrophoretic profiles of the proteins revealed a predominance of acidic, neutral, and polar proteins, highlighting the presence of proteins with high molecular masses. Five fractions were collected using cation exchange chromatography, with the P4 fraction standing out as that of the highest purity. All fractions showed proteolytic activity. The crude venom and fractions P1, P2, and P3 showed larvicidal effects on A. aegypti. Fraction P4 showed the presence of a possible metalloprotease (60 kDa) that has high proteolytic activity on azo-collagen and was inhibited by EDTA. The results presented in this study demonstrate the presence of proteins in the venom of P. bistriata with potential for biotechnological applications.


Asunto(s)
Insecticidas/toxicidad , Proteolisis/efectos de los fármacos , Venenos de Araña/toxicidad , Arañas/química , Aedes/efectos de los fármacos , Animales , Anticoagulantes/farmacología , Bacterias/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Cromatografía por Intercambio Iónico , Electroforesis en Gel Bidimensional , Fibrinógeno/metabolismo , Hongos/efectos de los fármacos , Humanos , Larva/efectos de los fármacos , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Masculino , Ratones , Pruebas de Sensibilidad Microbiana
14.
Biomed Res Int ; 2014: 595186, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24719874

RESUMEN

This paper presents a novel serine protease (SP) isolated from Bothrops pirajai, a venomous snake found solely in Brazil that belongs to the Viperidae family. The identified SP, named BpirSP-39, was isolated by three chromatographic steps (size exclusion, bioaffinity, and reverse phase chromatographies). The molecular mass of BpirSP-39 was estimated by SDS-PAGE and confirmed by mass spectrometry (39,408.32 Da). The protein was able to form fibrin networks, which was not observed in the presence of serine protease inhibitors, such as phenylmethylsulfonyl fluoride (PMSF). Furthermore, BpirSP-39 presented considerable thermal stability and was apparently able to activate factor XIII of the blood coagulation cascade, unlike most serine proteases. BpirSP-39 was capable of hydrolyzing different chromogenic substrates tested (S-2222, S-2302, and S-2238) while Cu(2+) significantly diminished BspirSP-39 activity on the three tested substrates. The enzyme promoted platelet aggregation and also exhibited fibrinogenolytic, fibrinolytic, gelatinolytic, and amidolytic activities. The multiple alignment showed high sequence similarity to other thrombin-like enzymes from snake venoms. These results allow us to conclude that a new SP was isolated from Bothrops pirajai snake venom.


Asunto(s)
Venenos de Crotálidos , Factor VIII/química , Fibrinólisis , Serina Proteasas/química , Serina Proteasas/aislamiento & purificación , Animales , Bothrops , Humanos , Peso Molecular , Fluoruro de Fenilmetilsulfonilo/química , Inhibidores de Serina Proteinasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...