Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 41(1): 667-76, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23161686

RESUMEN

In the yeast Saccharomyces cerevisiae, the aminoacyl-tRNA synthetases (aaRS) GluRS and MetRS form a complex with the auxiliary protein cofactor Arc1p. The latter binds the N-terminal domains of both synthetases increasing their affinity for the transfer-RNA (tRNA) substrates tRNA(Met) and tRNA(Glu). Until now, structural information was available only on the enzymatic domains of the individual aaRSs but not on their complexes with associated cofactors. We have analysed the yeast Arc1p-complexes in solution by small-angle X-ray scattering (SAXS). The ternary complex of MetRS and GluRS with Arc1p, displays a peculiar extended star-like shape, implying possible flexibility of the complex. We reconstituted in vitro a pentameric complex and demonstrated by electrophoretic mobility shift assay that the complex is active and contains tRNA(Met) and tRNA(Glu), in addition to the three protein partners. SAXS reveals that binding of the tRNAs leads to a dramatic compaction of the pentameric complex compared to the ternary one. A hybrid low-resolution model of the pentameric complex is constructed rationalizing the compaction effect by the interactions of negatively charged tRNA backbones with the positively charged tRNA-binding domains of the synthetases.


Asunto(s)
Glutamato-ARNt Ligasa/química , Metionina-ARNt Ligasa/química , ARN de Transferencia de Ácido Glutámico/química , ARN de Transferencia de Metionina/química , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Ensayo de Cambio de Movilidad Electroforética , Glutamato-ARNt Ligasa/metabolismo , Metionina-ARNt Ligasa/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , ARN de Transferencia de Ácido Glutámico/metabolismo , ARN de Transferencia de Metionina/metabolismo , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X
4.
J Mol Biol ; 374(4): 1077-90, 2007 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-17976650

RESUMEN

Eukaryotic aminoacyl-tRNA synthetases are usually organized into high-molecular-weight complexes, the structure and function of which are poorly understood. We have previously described a yeast complex containing two aminoacyl-tRNA synthetases, methionyl-tRNA synthetase and glutamyl-tRNA synthetase, and one noncatalytic protein, Arc1p, which can stimulate the catalytic efficiency of the two synthetases. To understand the complex assembly mechanism and its relevance to the function of its components, we have generated specific mutations in residues predicted by a recent structural model to be located at the interaction interfaces of the N-terminal domains of all three proteins. Recombinant wild-type or mutant forms of the proteins, as well as the isolated N-terminal domains of the two synthetases, were overexpressed in bacteria, purified and used for complex formation in vitro and for determination of binding affinities using surface plasmon resonance. Moreover, mutant proteins were expressed as PtA or green fluorescent protein fusion polypeptides in yeast strains lacking the endogenous proteins in order to monitor in vivo complex assembly and their subcellular localization. Our results show that the assembly of the Arc1p-synthetase complex is mediated exclusively by the N-terminal domains of the synthetases and that the two enzymes bind to largely independent sites on Arc1p. Analysis of single-amino-acid substitutions identified residues that are directly involved in the formation of the complex in yeast cells and suggested that complex assembly is mediated predominantly by van der Waals and hydrophobic interactions, rather than by electrostatic forces. Furthermore, mutations that abolish the interaction of methionyl-tRNA synthetase with Arc1p cause entry of the enzyme into the nucleus, proving that complex association regulates its subcellular distribution. The relevance of these findings to the evolution and function of the multienzyme complexes of eukaryotic aminoacyl-tRNA synthetases is discussed.


Asunto(s)
Glutamato-ARNt Ligasa/metabolismo , Metionina-ARNt Ligasa/metabolismo , Modelos Moleculares , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Metionina-ARNt Ligasa/química , Metionina-ARNt Ligasa/genética , Datos de Secuencia Molecular , Mutación , Unión Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
5.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 12): 1510-9, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17139087

RESUMEN

Eukaryotic aminoacyl-tRNA synthetases (aaRS) frequently contain additional appended domains that are absent from their prokaryotic counterparts which mediate complex formation between eukaryotic aaRS and cofactors of aminoacylation and translation. However, the structural basis of such interactions has remained elusive. The heteromerization domain of yeast glutamyl-tRNA synthetase (GluRS) has been cloned, expressed, purified and crystallized in space group C222(1), with unit-cell parameters a = 52, b = 107, c = 168 A. Phase information was obtained from multiple-wavelength anomalous dispersion with selenomethionine to 2.5 A resolution and the structure, comprising two monomers per asymmetric unit, was determined and refined to 1.9 A resolution. The structure of the interacting domain of its accessory protein Arc1p was determined and refined to 1.9 A resolution in a crystal form containing 20 monomers organized in five tetramers per asymmetric unit (space group C2, unit-cell parameters a = 222, b = 89, c = 127 A, beta = 99.4 degrees ). Both domains adopt a GST-like fold, demonstrating a novel role for this fold as a protein-protein interaction module.


Asunto(s)
Transporte Activo de Núcleo Celular , Glutamato-ARNt Ligasa/química , Pliegue de Proteína , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Aminoacilación de ARN de Transferencia , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
6.
Nucleic Acids Res ; 34(14): 3968-79, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16914447

RESUMEN

The yeast aminoacyl-tRNA synthetase (aaRS) complex is formed by the methionyl- and glutamyl-tRNA synthetases (MetRS and GluRS, respectively) and the tRNA aminoacylation cofactor Arc1p. It is considered an evolutionary intermediate between prokaryotic aaRS and the multi- aaRS complex found in higher eukaryotes. While a wealth of structural information is available on the enzymatic domains of single aaRS, insight into complex formation between eukaryotic aaRS and associated protein cofactors is missing. Here we report crystal structures of the binary complexes between the interacting domains of Arc1p and MetRS as well as those of Arc1p and GluRS at resolutions of 2.2 and 2.05 A, respectively. The data provide a complete structural model for ternary complex formation between the interacting domains of MetRS, GluRS and Arc1p. The structures reveal that all three domains adopt a glutathione S-transferase (GST)-like fold and that simultaneous interaction of Arc1p with GluRS and MetRS is mediated by the use of a novel interface in addition to a classical GST dimerization interaction. The results demonstrate a novel role for this fold as a heteromerization domain specific to eukaryotic aaRS, associated proteins and protein translation elongation factors.


Asunto(s)
Glutamato-ARNt Ligasa/química , Metionina-ARNt Ligasa/química , Modelos Moleculares , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Dimerización , Glutatión Transferasa/química , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia
7.
Artículo en Inglés | MEDLINE | ID: mdl-16582481

RESUMEN

Eukaryotic aminoacyl-tRNA synthetases (aaRSs) must be integrated into an efficient tRNA-export and shuttling machinery. This is reflected by the presence of additional protein-protein interaction domains and a correspondingly higher degree of complex formation in eukaryotic aaRSs. However, the structural basis of interaction between eukaryotic aaRSs and associated protein cofactors has remained elusive. The N-terminal heteromerization domain of the tRNA aminoacylation and export cofactor Arc1p has been cloned from yeast, expressed and purified. Crystals have been obtained belonging to space group C2, with unit-cell parameters a = 222.32, b = 89.46, c = 126.79 angstroms, beta = 99.39 degrees. Calculated Matthews coefficients are compatible with the presence of 10-25 monomers in the asymmetric unit. A complete multiple-wavelength anomalous dispersion data set has been collected from a selenomethionine-substituted crystal at 2.8 angstroms resolution. Preliminary phasing reveals the presence of 20 monomers organized in five tetramers per asymmetric unit.


Asunto(s)
ARN de Hongos/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Transporte Biológico , Cristalografía por Rayos X , Sustancias Macromoleculares , Modelos Moleculares , Conformación Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
8.
J Biol Chem ; 280(3): 2257-65, 2005 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-15528209

RESUMEN

The related high molecular mass microtubule-associated proteins (MAPs) MAP1A and MAP1B are predominantly expressed in the nervous system and are involved in axon guidance and synaptic function. MAP1B is implicated in fragile X mental retardation, giant axonal neuropathy, and ataxia type 1. We report the functional characterization of a novel member of the microtubule-associated protein 1 family, which we termed MAP1S (corresponding to sequence data bank entries for VCY2IP1 and C19ORF5). MAP1S contains the three hallmark domains of the microtubule-associated protein 1 family but hardly any additional sequences. It decorates neuronal microtubules and copurifies with tubulin from brain. MAP1S is synthesized as a precursor protein that is partially cleaved into heavy and light chains in a tissue-specific manner. Heavy and light chains interact to form the MAP1S complex. The light chain binds, bundles, and stabilizes microtubules and binds to actin. The heavy chain appears to regulate light chain activity. In contrast to MAP1A and MAP1B, MAP1S is expressed in a wide range of tissues in addition to neurons and represents the non-neuronal counterpart of this cytolinker family.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Actinas/metabolismo , Animales , Secuencia de Bases , Encéfalo/crecimiento & desarrollo , Cartilla de ADN , ADN Complementario , Genoma , Humanos , Inmunohistoquímica , Ratones , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Peso Molecular , Células de Purkinje/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...