Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 87(2): 023511, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26931853

RESUMEN

We describe an experimental method to measure the gate profile of an x-ray framing camera and to determine several important functional parameters: relative gain (between strips), relative gain droop (within each strip), gate propagation velocity, gate width, and actual inter-strip timing. Several of these parameters cannot be measured accurately by any other technique. This method is then used to document cross talk-induced gain variations and artifacts created by radiation that arrives before the framing camera is actively amplifying x-rays. Electromagnetic cross talk can cause relative gains to vary significantly as inter-strip timing is varied. This imposes a stringent requirement for gain calibration. If radiation arrives before a framing camera is triggered, it can cause an artifact that manifests as a high-intensity, spatially varying background signal. We have developed a device that can be added to the framing camera head to prevent these artifacts.

2.
Rev Sci Instrum ; 83(10): 10D729, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126901

RESUMEN

Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.

3.
Rev Sci Instrum ; 83(10): 10E118, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126940

RESUMEN

Gated and streaked x-ray detectors generally require corrections in order to counteract instrumental effects in the data. The method of correcting for gain variations in gated cameras fielded at National Ignition Facility (NIF) is described. Four techniques for characterizing the gated x-ray detectors are described. The current principal method of characterizing x-ray instruments is the production of controlled x-ray emission by laser-generated plasmas as a dedicated shot at the NIF. A recently commissioned pulsed x-ray source has the potential to replace the other characterization systems. This x-ray source features a pulsed power source consisting of a Marx generator, capacitor bank that is charged in series and discharged in parallel, producing up to 300 kV. The pulsed x-ray source initially suffered from a large jitter (∼60 ns), but the recent addition of a pulsed laser to trigger the spark gap has reduced the jitter to ∼5 ns. Initial results show that this tool is a promising alternative to the other flat fielding techniques.

4.
Rev Sci Instrum ; 83(10): 10E135, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126956

RESUMEN

We present evidence that electromagnetic crosstalk between independent strips in gated x-ray framing cameras can affect relative gains by up to an order of magnitude and gate arrival times up to tens of picoseconds when strip separation times are less then ∼1 ns. Crosstalk is observed by multiple methods, and it is confirmed by direct measurements of voltage on the active surface of the detector and also by indirect voltage monitors in routine operation. The voltage measurements confirm that crosstalk is produced not only in the active regions of the microchannel plate, but also along the entire input path of the voltage pulses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...