Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Surg ; 10: 1321217, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162091

RESUMEN

Objective: This study aims to critically evaluate the effectiveness and accuracy of a time safing and cost-efficient open-source algorithm for in-house planning of mandibular reconstructions using the free osteocutaneous fibula graft. The evaluation focuses on quantifying anatomical accuracy and assessing the impact on ischemia time. Methods: A pilot study was conducted, including patients who underwent in-house planned computer-aided design and manufacturing (CAD/CAM) of free fibula flaps between 2021 and 2023. Out of all patient cases, we included all with postoperative 3D imaging in the study. The study utilized open-source software tools for the planning step, and three-dimensional (3D) printing techniques. The Hausdorff distance and Dice coefficient metrics were used to evaluate the accuracy of the planning procedure. Results: The study assessed eight patients (five males and three females, mean age 61.75 ± 3.69 years) with different diagnoses such as osteoradionecrosis and oral squamous cell carcinoma. The average ischemia time was 68.38 ± 27.95 min. For the evaluation of preoperative planning vs. the postoperative outcome, the mean Hausdorff Distance was 1.22 ± 0.40. The Dice Coefficients yielded a mean of 0.77 ± 0.07, suggesting a satisfactory concordance between the planned and postoperative states. Dice Coefficient and Hausdorff Distance revealed significant correlations with ischemia time (Spearman's rho = -0.810, p = 0.015 and Spearman's rho = 0.762, p = 0.028, respectively). Linear regression models adjusting for disease type further substantiated these findings. Conclusions: The in-house planning algorithm not only achieved high anatomical accuracy, as reflected by the Dice Coefficients and Hausdorff Distance metrics, but this accuracy also exhibited a significant correlation with reduced ischemia time. This underlines the critical role of meticulous planning in surgical outcomes. Additionally, the algorithm's open-source nature renders it cost-efficient, easy to learn, and broadly applicable, offering promising avenues for enhancing both healthcare affordability and accessibility.

2.
Eur Radiol Exp ; 5(1): 30, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34318382

RESUMEN

With advancements in computer systems, computer graphics and medical imaging technologies, clinicians strive for a personalised approach to patient treatment. Therefore, the production of personalised surgical guides is becoming standard. While proprietary software solutions for mandibular reconstruction planning exist, they are often not available due to their high costs. There are multiple alternative methods available, which utilise open-source technologies and free software, but they use advanced three-dimensional (3D) computer-aided design (CAD) concepts. The goal of this article is to provide end-users (surgeons, radiologists, or radiology technicians) with a tool that offers an intuitive interface and a simple workflow. The tool provides only the necessary methods offering a high degree of automation and abstracting the underlying 3D CAD concepts. This is accomplished by providing an add-on (written in Python) for a free and open-source software package Blender.


Asunto(s)
Colgajos Tisulares Libres , Reconstrucción Mandibular , Procedimientos de Cirugía Plástica , Diseño Asistido por Computadora , Peroné/cirugía , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...