Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
JCO Precis Oncol ; 8: e2400145, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39447096

RESUMEN

PURPOSE: Current clinical risk stratification methods for localized prostate cancer are suboptimal, leading to over- and undertreatment. Recently, machine learning approaches using digital histopathology have shown superior prognostic ability in phase III trials. This study aims to develop a clinically usable risk grouping system using multimodal artificial intelligence (MMAI) models that outperform current National Comprehensive Cancer Network (NCCN) risk groups. MATERIALS AND METHODS: The cohort comprised 9,787 patients with localized prostate cancer from eight NRG Oncology randomized phase III trials, treated with radiation therapy, androgen deprivation therapy, and/or chemotherapy. Locked MMAI models, which used digital histopathology images and clinical data, were applied to each patient. Expert consensus on cut points defined low-, intermediate-, and high-risk groups on the basis of 10-year distant metastasis rates of 3% and 10%, respectively. The MMAI's reclassification and prognostic performance were compared with the three-tier NCCN risk groups. RESULTS: The median follow-up for censored patients was 7.9 years. According to NCCN risk categories, 30.4% of patients were low-risk, 25.5% intermediate-risk, and 44.1% high-risk. The MMAI risk classification identified 43.5% of patients as low-risk, 34.6% as intermediate-risk, and 21.8% as high-risk. MMAI reclassified 1,039 (42.0%) patients initially categorized by NCCN. Despite the MMAI low-risk group being larger than the NCCN low-risk group, the 10-year metastasis risks were comparable: 1.7% (95% CI, 0.2 to 3.2) for NCCN and 3.2% (95% CI, 1.7 to 4.7) for MMAI. The overall 10-year metastasis risk for NCCN high-risk patients was 16.6%, with MMAI further stratifying this group into low-, intermediate-, and high-risk, showing metastasis rates of 3.4%, 8.2%, and 26.3%, respectively. CONCLUSION: The MMAI risk grouping system expands the population of men identified as having low metastatic risk and accurately pinpoints a high-risk subset with elevated metastasis rates. This approach aims to prevent both overtreatment and undertreatment in localized prostate cancer, facilitating shared decision making.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/patología , Medición de Riesgo/métodos , Anciano , Ensayos Clínicos Controlados Aleatorios como Asunto , Persona de Mediana Edad , Ensayos Clínicos Fase III como Asunto
3.
Magn Reson Imaging ; 114: 110233, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39260625

RESUMEN

PURPOSE: To establish the incidence, size, zonal location and Gleason Score(GS)/Gleason Grade Group(GG) of sparse versus dense prostate cancer (PCa) lesions and to identify the imaging characteristics of sparse versus dense cancers on multiparametric MRI (mpMRI). METHODS: Seventy-six men with untreated PCa were scanned prior to prostatectomy with endorectal-coil 3 T MRI including T2-weighted imaging, diffusion-weighted imaging and dynamic contrast-enhanced MRI. Cancerous regions were outlined and graded on the whole-mount, processed specimens, with tissue compositions estimated. Regions with cancer comprising <50 % and ≥ 50 % of the tissue were considered sparse and dense respectively. Regions of interest (ROI) were manually drawn on T2-weighted MRI. Within each patient, area-weighted ROI averages were calculated for each imaging measure for each tissue type, GS/GG, and sparse/dense composition. RESULTS: A large number of cancer regions were identified on histopathology (n = 1193: 939 (peripheral zone (PZ)) and 254 (transition zone (TZ))). Thirty-seven percent of these lesions were sparse. Sparse lesions were primarily low-grade with the majority of PZ and 100 % of TZ sparse lesions ≤GS3 + 3/GG1. Dense lesions were significantly larger than sparse lesions in both PZ and TZ, p < 0.0001. On imaging, 246/45 PZ and 109/8 TZ dense/sparse 2D cancerous ROIs were drawn. Sparse GS3 + 3 and sparse ≥GS3 + 4 cancers did not have significantly different MRI intensities to dense GS3 + 3 cancers, while sparse GS3 + 3/GG1 cancers differed from benign, p < 0.05. CONCLUSION: Histopathologically identified prostate cancer lesions were sparse in 37 % of cases. Sparse cancers were entirely low grade in TZ and predominantly low-grade in PZ and generally small, thus likely posing lower risk for spread and progression than dense lesions. Sparse lesions were not distinguishable from dense lesions on mpMRI, but could be distinguished from benign tissues.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Clasificación del Tumor , Próstata , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Anciano , Persona de Mediana Edad , Próstata/diagnóstico por imagen , Próstata/patología , Imagen por Resonancia Magnética/métodos , Prostatectomía
4.
Ann Diagn Pathol ; 73: 152370, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39180886

RESUMEN

Small/flat urothelial lesions are challenging and currently available ancillary immunohistochemistry testing often cannot reliably distinguish between reactive lesions and urothelial carcinoma (UCa). UCa has a characteristic molecular profile, but small/flat urothelial lesions are typically considered too small to perform next generation sequencing (NGS). Herein, we present our institution's experience with utilizing comprehensive DNA-based NGS to evaluate small/flat urothelial lesions (n = 13 cases). NGS was ordered on 7/13 small/flat urothelial lesions initially diagnosed as urothelial atypia, ordered by the pathologist to aid in further diagnosis; the remaining 6/13 cases were diagnosed as urothelial carcinoma in situ (uCIS), ordered by a treating oncologist. The test was considered as adding value if it yielded pathogenic or likely pathogenic alterations previously associated with urothelial carcinoma in the literature. Macroscopic dissection was determined necessary in all cases and obtained either by scraping (7), punch biopsy (5) or scooping (1) of paraffin tissue blocks. In 4/13 cases, tumor content was considered low (<25%); in 2/13 cases, DNA quantity yield was considered below optimal (<250 ng); all cases met required DNA quantity for testing (>50 ng). Mean target coverage ranged: 498 to 985 (optimal >500 reads). NGS testing identified mutations compatible with urothelial carcinoma in all 7 cases initially diagnosed as atypical; and in one case, the tumor recurred as a lung metastasis. All 6 uCIS had NGS testing results concordant with UCa. In conclusion, despite small sample quantity with low tumor content and DNA concentration yield, NGS testing with appropriate methodology can be considered in the setting of small/flat urothelial lesions to aid in diagnosis or per oncologist request and yield interpretable results.

5.
Prostate ; 84(11): 1076-1085, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38734990

RESUMEN

BACKGROUND: Molecular-based risk classifier tests are increasingly being utilized by urologists and radiation oncologists to guide clinical decision making. The Decipher prostate biopsy test is a 22-gene RNA biomarker assay designed to predict likelihood of high-grade disease at radical prostatectomy and risk of metastasis and mortality. The test provides a risk category of low, intermediate, or high. We investigated histologic features of biopsies in which the Grade Group (GG) and Decipher risk category (molecular risk) were discrepant. METHODS: Our institutional urologic outcomes database was searched for men who underwent prostate biopsies with subsequent Decipher testing from 2016 to 2020. We defined discrepant GG and molecular risk as either GG1-2 with high Decipher risk category or GG ≥ 3 with low Decipher risk category. The biopsy slide on which Decipher testing was performed was re-reviewed for GG and various histologic features, including % Gleason pattern 4, types of Gleason pattern 4 and 5, other "high risk" features (e.g., complex papillary, ductal carcinoma, intraductal carcinoma [IDC]), and other unusual and often "difficult to grade" patterns (e.g., atrophic carcinoma, mucin rupture, pseudohyperplastic carcinoma, collagenous fibroplasia, foamy gland carcinoma, carcinoma with basal cell marker expression, carcinoma with prominent vacuoles, and stromal reaction). Follow-up data was also obtained from the electronic medical record. RESULTS: Of 178 men who underwent prostate biopsies and had Decipher testing performed, 41 (23%) had discrepant GG and molecular risk. Slides were available for review for 33/41 (80%). Of these 33 patients, 23 (70%) had GG1-2 (GG1 n = 5, GG2 n = 18) with high Decipher risk, and 10 (30%) had GG ≥ 3 with low Decipher risk. Of the 5 GG1 cases, one case was considered GG2 on re-review; no other high risk features were identified but each case showed at least one of the following "difficult to grade" patterns: 3 atrophic carcinoma, 1 collagenous fibroplasia, 1 carcinoma with mucin rupture, and 1 carcinoma with basal cell marker expression. Of the 18 GG2 high Decipher risk cases, 2 showed GG3 on re-review, 5 showed large cribriform and/or other high risk features, and 10 showed a "difficult to grade" pattern. Of the 10 GG ≥ 3 low Decipher risk cases, 5 had known high risk features including 2 with large cribriform, 1 with IDC, and 1 with Gleason pattern 5. CONCLUSIONS: In GG1-2 high Decipher risk cases, difficult to grade patterns were frequently seen in the absence of other known high risk morphologic features; whether these constitute true high risk cases requires further study. In the GG ≥ 3 low Decipher risk cases, aggressive histologic patterns such as large cribriform and IDC were observed in half (50%) of cases; therefore, the molecular classifier may not capture all high risk histologic patterns.


Asunto(s)
Clasificación del Tumor , Próstata , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Próstata/patología , Biopsia , Persona de Mediana Edad , Anciano , Biomarcadores de Tumor/genética , Medición de Riesgo , Prostatectomía
6.
Eur Urol Oncol ; 7(5): 986-989, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38641541

RESUMEN

Chemoradiation therapy (CRT) is a treatment for muscle-invasive bladder cancer (MIBC). Using a novel transcriptomic profiling panel, we validated prognostic immune biomarkers to CRT using 70 pretreatment tumor samples from prospective trials of MIBC (NRG/RTOG 0524 and 0712). Disease-free survival (DFS) and overall survival (OS) were estimated via the Kaplan-Meier method and stratified by genes correlated with immune cell activation. Cox proportional-hazards models were used to assess group differences. Clustering of gene expression profiles revealed that the cluster with high immune cell content was associated with longer DFS (hazard ratio [HR] 0.53, 95% confidence interval [CI] 0.26-1.10; p = 0.071) and OS (HR 0.48, 95% CI 0.24-0.97; p = 0.040) than the cluster with low immune cell content. Higher expression of T-cell infiltration genes (CD8A and ICOS) was associated with longer DFS (HR 0.40, 95% CI 0.21-0.75; p = 0.005) and OS (HR 0.49, 95% CI 0.25-0.94; p = 0.033). Higher IDO1 expression (IFNγ signature) was also associated with longer DFS (HR 0.44, 95% CI 0.24-0.88; p = 0.021) and OS (HR 0.49, 95% CI 0.24-0.99; p = 0.048). These findings should be validated in prospective CRT trials that include biomarkers, particularly for trials incorporating immunotherapy for MIBC. PATIENT SUMMARY: We analyzed patient samples from two clinical trials (NRG/RTOG 0524 and 0712) of chemoradiation for muscle-invasive bladder cancer using a novel method to assess immune cells in the tumor microenvironment. Higher expression of genes associated with immune activation and high overall immune-cell content were associated with better disease-free survival and overall survival for patients treated with chemoradiation.


Asunto(s)
Quimioradioterapia , Invasividad Neoplásica , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/terapia , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/mortalidad , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Pronóstico , Masculino , Femenino , Anciano , Persona de Mediana Edad , Linfocitos Infiltrantes de Tumor/inmunología , Supervivencia sin Enfermedad
7.
IEEE Trans Med Imaging ; 43(7): 2610-2622, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38547000

RESUMEN

Non-invasive prostate cancer classification from MRI has the potential to revolutionize patient care by providing early detection of clinically significant disease, but has thus far shown limited positive predictive value. To address this, we present a image-based deep learning method to predict clinically significant prostate cancer from screening MRI in patients that subsequently underwent biopsy with results ranging from benign pathology to the highest grade tumors. Specifically, we demonstrate that mixed supervision via diverse histopathological ground truth improves classification performance despite the cost of reduced concordance with image-based segmentation. Where prior approaches have utilized pathology results as ground truth derived from targeted biopsies and whole-mount prostatectomy to strongly supervise the localization of clinically significant cancer, our approach also utilizes weak supervision signals extracted from nontargeted systematic biopsies with regional localization to improve overall performance. Our key innovation is performing regression by distribution rather than simply by value, enabling use of additional pathology findings traditionally ignored by deep learning strategies. We evaluated our model on a dataset of 973 (testing n=198 ) multi-parametric prostate MRI exams collected at UCSF from 2016-2019 followed by MRI/ultrasound fusion (targeted) biopsy and systematic (nontargeted) biopsy of the prostate gland, demonstrating that deep networks trained with mixed supervision of histopathology can feasibly exceed the performance of the Prostate Imaging-Reporting and Data System (PI-RADS) clinical standard for prostate MRI interpretation (71.6% vs 66.7% balanced accuracy and 0.724 vs 0.716 AUC).


Asunto(s)
Aprendizaje Profundo , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Próstata , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Imagen por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Próstata/diagnóstico por imagen , Próstata/patología
8.
Eur Urol Oncol ; 7(5): 1024-1033, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38302323

RESUMEN

BACKGROUND: Accurate risk stratification is critical to guide management decisions in localized prostate cancer (PCa). Previously, we had developed and validated a multimodal artificial intelligence (MMAI) model generated from digital histopathology and clinical features. Here, we externally validate this model on men with high-risk or locally advanced PCa treated and followed as part of a phase 3 randomized control trial. OBJECTIVE: To externally validate the MMAI model on men with high-risk or locally advanced PCa treated and followed as part of a phase 3 randomized control trial. DESIGN, SETTING, AND PARTICIPANTS: Our validation cohort included 318 localized high-risk PCa patients from NRG/RTOG 9902 with available histopathology (337 [85%] of the 397 patients enrolled into the trial had available slides, of which 19 [5.6%] failed due to poor image quality). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Two previously locked prognostic MMAI models were validated for their intended endpoint: distant metastasis (DM) and PCa-specific mortality (PCSM). Individual clinical factors and the number of National Comprehensive Cancer Network (NCCN) high-risk features served as comparators. Subdistribution hazard ratio (sHR) was reported per standard deviation increase of the score with corresponding 95% confidence interval (CI) using Fine-Gray or Cox proportional hazards models. RESULTS AND LIMITATIONS: The DM and PCSM MMAI algorithms were significantly and independently associated with the risk of DM (sHR [95% CI] = 2.33 [1.60-3.38], p < 0.001) and PCSM, respectively (sHR [95% CI] = 3.54 [2.38-5.28], p < 0.001) when compared against other prognostic clinical factors and NCCN high-risk features. The lower 75% of patients by DM MMAI had estimated 5- and 10-yr DM rates of 4% and 7%, and the highest quartile had average 5- and 10-yr DM rates of 19% and 32%, respectively (p < 0.001). Similar results were observed for the PCSM MMAI algorithm. CONCLUSIONS: We externally validated the prognostic ability of MMAI models previously developed among men with localized high-risk disease. MMAI prognostic models further risk stratify beyond the clinical and pathological variables for DM and PCSM in a population of men already at a high risk for disease progression. This study provides evidence for consistent validation of our deep learning MMAI models to improve prognostication and enable more informed decision-making for patient care. PATIENT SUMMARY: This paper presents a novel approach using images from pathology slides along with clinical variables to validate artificial intelligence (computer-generated) prognostic models. When implemented, clinicians can offer a more personalized and tailored prognostic discussion for men with localized prostate cancer.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Próstata , Anciano , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Medición de Riesgo/métodos , Ensayos Clínicos Fase III como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto
9.
Cancer ; 130(10): 1766-1772, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280206

RESUMEN

BACKGROUND: The challenge of distinguishing indolent from aggressive prostate cancer (PCa) complicates decision-making for men considering active surveillance (AS). Genomic classifiers (GCs) may improve risk stratification by predicting end points such as upgrading or upstaging (UG/US). The aim of this study was to assess the impact of GCs on UG/US risk prediction in a clinicopathologic model. METHODS: Participants had favorable-risk PCa (cT1-2, prostate-specific antigen [PSA] ≤15 ng/mL, and Gleason grade group 1 [GG1]/low-volume GG2). A prediction model was developed for 864 men at the University of California, San Francisco, with standard clinical variables (cohort 1), and the model was validated for 2267 participants from the Cancer of the Prostate Strategic Urologic Research Endeavor (CaPSURE) registry (cohort 2). Logistic regression was used to compute the area under the receiver operating characteristic curve (AUC) to develop a prediction model for UG/US at prostatectomy. A GC (Oncotype Dx Genomic Prostate Score [GPS] or Prolaris) was then assessed to improve risk prediction. RESULTS: The prediction model included biopsy GG1 versus GG2 (odds ratio [OR], 5.83; 95% confidence interval [CI], 3.73-9.10); PSA (OR, 1.10; 95% CI, 1.01-1.20; per 1 ng/mL), percent positive cores (OR, 1.01; 95% CI, 1.01-1.02; per 1%), prostate volume (OR, 0.98; 95% CI, 0.97-0.99; per mL), and age (OR, 1.05; 95% CI, 1.02-1.07; per year), with AUC 0.70 (cohort 1) and AUC 0.69 (cohort 2). GPS was associated with UG/US (OR, 1.03; 95% CI, 1.01-1.06; p < .01) and AUC 0.72, which indicates a comparable performance to the prediction model. CONCLUSIONS: GCs did not substantially improve a clinical prediction model for UG/US, a short-term and imperfect surrogate for clinically relevant disease outcomes.


Asunto(s)
Biomarcadores de Tumor , Clasificación del Tumor , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/sangre , Persona de Mediana Edad , Anciano , Biomarcadores de Tumor/genética , Medición de Riesgo , Antígeno Prostático Específico/sangre , Estadificación de Neoplasias , Prostatectomía , Genómica/métodos , Curva ROC
10.
Eur Urol Oncol ; 7(1): 63-72, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37516587

RESUMEN

BACKGROUND: Men with high-risk prostate cancer undergoing surgery likely recur due to failure to completely excise regional and/or local disease. OBJECTIVE: The first-in-human evaluation of safety, pharmacokinetics, and exploratory efficacy of IS-002, a novel near-infrared prostate-specific membrane antigen (PSMA)-targeted fluorescence imaging agent, designed for intraoperative prostate cancer visualization. DESIGN, SETTING, AND PARTICIPANTS: A phase 1, single-center, dose-escalation study was conducted in 24 men with high-risk prostate cancer scheduled for robotic-assisted radical prostatectomy with (extended) pelvic lymph node dissection using the da Vinci surgical system. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Adverse events (AEs), vital signs, complete blood count, complete metabolic panel, urinalysis, and electrocardiogram were assessed over a 14-d period and compared with baseline. The pharmacokinetic profile of IS-002 was determined. Diagnostic accuracy was assessed for exploratory efficacy. RESULTS AND LIMITATIONS: AEs predominantly included discoloration of urine (n = 22/24; expected, related, grade 1). There were no grade ≥2 AEs. IS-002 Cmax and area under the curve increased with increasing dose. Plasma concentrations declined rapidly in a biphasic manner, with the median terminal half-lives ranging from 5.0 to 7.6 h, independent of dose and renal function. At 25 µg/kg, the exploratory efficacy readouts for the negative and positive predictive values were, 97% and 45% for lymph nodes, and 100% and 80% for residual/locoregional disease detection, respectively. CONCLUSIONS: IS-002 is safe and well tolerated, and has the potential to enable intraoperative tumor detection that could not be identified using standard imaging. PATIENT SUMMARY: IS-002 is a new imaging agent that specifically targets the prostate-specific membrane antigen receptor. In this study, we tested IS-002 for the first time in men with high-risk prostate cancer undergoing surgery and found that IS-002 is safe, is cleared from the body quickly, and potentially allows identification of prostate cancer in areas that would not be identified by conventional white light imaging.


Asunto(s)
Neoplasias de la Próstata , Procedimientos Quirúrgicos Robotizados , Masculino , Humanos , Próstata/patología , Recurrencia Local de Neoplasia/patología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía , Prostatectomía/métodos
11.
Eur Urol Oncol ; 7(2): 222-230, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37474400

RESUMEN

BACKGROUND: Prostate cancers featuring an expansile cribriform (EC) pattern are associated with worse clinical outcomes following radical prostatectomy (RP). However, studies of the genomic characteristics of Gleason pattern 4 subtypes are limited. OBJECTIVE: To explore transcriptomic characteristics and heterogeneity within Gleason pattern 4 subtypes (fused/poorly formed, glomeruloid, small cribriform, EC/intraductal carcinoma [IDC]) and the association with biochemical recurrence (BCR)-free survival. DESIGN, SETTING, AND PARTICIPANTS: This was a retrospective cohort study including 165 men with grade group 2-4 prostate cancer who underwent RP at a single academic institution (2016-2020) and Decipher testing of the RP specimen. Patients with Gleason pattern 5 were excluded. IDC and EC patterns were grouped. Median follow-up was 2.5 yr after RP for patients without BCR. OUTCOMES MEASUREMENTS AND STATISTICAL ANALYSIS: Prompted by heterogeneity within pattern 4 subtypes identified via exploratory analyses, we investigated transcriptomic consensus clusters using partitioning around medoids and hallmark gene set scores. The primary clinical outcome was BCR, defined as two consecutive prostate-specific antigen measurements >0.2 ng/ml at least 8 wk after RP, or any additional treatment. Multivariable Cox proportional-hazards models were used to determine factors associated with BCR-free survival. RESULTS AND LIMITATIONS: In this cohort, 99/165 patients (60%) had EC and 67 experienced BCR. Exploratory analyses and clustering demonstrated transcriptomic heterogeneity within each Gleason pattern 4 subtype. In the multivariable model controlled for pattern 4 subtype, margin status, Cancer of the Prostate Risk Assessment Post-Surgical score, and Decipher score, a newly identified steroid hormone-driven cluster (hazard ratio 2.35 95% confidence interval 1.01-5.47) was associated with worse BCR-free survival. The study is limited by intermediate follow-up, no validation cohort, and lack of accounting for intratumoral and intraprostatic heterogeneity. CONCLUSIONS: Transcriptomic heterogeneity was present within and across each Gleason pattern 4 subtype, demonstrating there is additional biologic diversity not captured by histologic subtypes. This heterogeneity can be used to develop novel signatures and to classify transcriptomic subtypes, which may help in refining risk stratification following RP to further guide decision-making on adjuvant and salvage treatments. PATIENT SUMMARY: We studied prostatectomy specimens and found that tumors with similar microscopic appearance can have genetic differences that may help to predict outcomes after prostatectomy for prostate cancer. Our results demonstrate that further gene expression analysis of prostate cancer subtypes may improve risk stratification after prostatectomy. Future studies are needed to develop novel gene expression signatures and validate these findings in independent sets of patients.


Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Masculino , Humanos , Estudios Retrospectivos , Transcriptoma , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/patología , Perfilación de la Expresión Génica
13.
Histopathology ; 84(4): 614-623, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38012532

RESUMEN

AIMS: A recent outcome-based, radical prostatectomy study defined > 0.25 mm diameter to distinguish large versus small cribriform glands, with > 0.25 mm associated with worse recurrence-free survival. This study evaluates whether identification of > 0.25 mm cribriform glands in Grade Group 2 patients at biopsy is associated with adverse pathology at radical prostatectomy. METHODS AND RESULTS: Tumours containing biopsy slides for 133 patients with Grade Group 2 prostate cancer with subsequent radical prostatectomy were re-reviewed for large cribriform glands (diameter > 0.25 mm). The primary outcome was adverse pathology (Grade Groups 3-5; stage pT3a or greater, or pN1). The secondary outcome was recurrence-free survival. Cribriform pattern was present in 52 of 133 (39%) patients; of these, 16 of 52 (31%) had large cribriform glands and 36 of 52 (69%) had only small cribriform glands. Patients with large cribriform glands had significantly more adverse pathology at radical prostatectomy compared to patients with small cribriform glands and no cribriform glands (large = 11 of 16, 69%; small = 12 of 36, 33%; no cribriform = 25 of 81, 31%; χ2 P-value 0.01). On multivariate analysis, large cribriform glands were also associated with adverse pathology, independent of age, prostate-specific antigen (PSA)/PSA density at diagnosis, year of diagnosis and biopsy cores percentage positive (global P-value 0.02). Large cribriform glands were also associated with increased CAPRA-S surgical risk score (Kruskal-Wallis P-value 0.02). CONCLUSIONS: Large cribriform glands using a diameter > 0.25 mm definition in Grade Group 2 patients on biopsy are associated with increased risk of adverse pathology at radical prostatectomy. The presence of large cribriform histology should be considered when offering active surveillance for those with Grade Group 2 disease.


Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/patología , Clasificación del Tumor , Biopsia , Próstata/patología , Prostatectomía/métodos
14.
Res Sq ; 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37131691

RESUMEN

Background: Androgen deprivation therapy (ADT) with radiotherapy can benefit patients with localized prostate cancer. However, ADT can negatively impact quality of life and there remain no validated predictive models to guide its use. Methods: Digital pathology image and clinical data from pre-treatment prostate tissue from 5,727 patients enrolled on five phase III randomized trials treated with radiotherapy +/- ADT were used to develop and validate an artificial intelligence (AI)-derived predictive model to assess ADT benefit with the primary endpoint of distant metastasis. After the model was locked, validation was performed on NRG/RTOG 9408 (n = 1,594) that randomized men to radiotherapy +/- 4 months of ADT. Fine-Gray regression and restricted mean survival times were used to assess the interaction between treatment and predictive model and within predictive model positive and negative subgroup treatment effects. Results: In the NRG/RTOG 9408 validation cohort (14.9 years of median follow-up), ADT significantly improved time to distant metastasis (subdistribution hazard ratio [sHR] = 0.64, 95%CI [0.45-0.90], p = 0.01). The predictive model-treatment interaction was significant (p-interaction = 0.01). In predictive model positive patients (n = 543, 34%), ADT significantly reduced the risk of distant metastasis compared to radiotherapy alone (sHR = 0.34, 95%CI [0.19-0.63], p < 0.001). There were no significant differences between treatment arms in the predictive model negative subgroup (n = 1,051, 66%; sHR = 0.92, 95%CI [0.59-1.43], p = 0.71). Conclusions: Our data, derived and validated from completed randomized phase III trials, show that an AI-based predictive model was able to identify prostate cancer patients, with predominately intermediate-risk disease, who are likely to benefit from short-term ADT.

15.
Int J Radiat Oncol Biol Phys ; 117(2): 370-377, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37137444

RESUMEN

PURPOSE: Intermediate-risk prostate cancer is a heterogeneous disease state with diverse treatment options. The 22-gene Decipher genomic classifier (GC) retrospectively has shown to improve risk stratification in these patients. We assessed the performance of the GC in men with intermediate-risk disease enrolled in NRG Oncology/RTOG 01-26 with updated follow-up. METHODS AND MATERIALS: After National Cancer Institute approval, biopsy slides were collected from NRG Oncology/RTOG 01-26, a randomized phase 3 trial of men with intermediate-risk prostate cancer randomized to 70.2 Gy versus 79.2 Gy of radiation therapy without androgen deprivation therapy. RNA was extracted from the highest-grade tumor foci to generate the locked 22-gene GC model. The primary endpoint for this ancillary project was disease progression (composite of biochemical failure, local failure, distant metastasis, prostate cancer-specific mortality, and use of salvage therapy). Individual endpoints were also assessed. Fine-Gray or cause-specific Cox multivariable models were constructed adjusting for randomization arm and trial stratification factors. RESULTS: Two-hundred fifteen patient samples passed quality control for analysis. The median follow-up was 12.8 years (range, 2.4-17.7). On multivariable analysis, the 22-gene GC (per 0.1 unit) was independently prognostic for disease progression (subdistribution hazard ratio [sHR], 1.12; 95% confidence interval [CI], 1.00-1.26; P = .04), biochemical failure (sHR, 1.22; 95% CI, 1.10-1.37; P < .001), distant metastasis (sHR, 1.28; 95% CI, 1.06-1.55; P = .01), and prostate cancer-specific mortality (sHR, 1.45; 95% CI, 1.20-1.76; P < .001). Ten-year distant metastasis in GC low-risk patients was 4% compared with 16% for GC high-risk patients. In patients with lower GC scores, the 10-year difference in metastasis-free survival rate between arms was -7%, compared with 21% for higher GC patients (P-interaction = .04). CONCLUSIONS: This study represents the first validation of a biopsy-based gene expression classifier, assessing both its prognostic and predictive value, using data from a randomized phase 3 trial of intermediate-risk prostate cancer. Decipher improves risk stratification and can aid in treatment decision-making in men with intermediate-risk disease.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/radioterapia , Antígeno Prostático Específico , Antagonistas de Andrógenos , Estudios Retrospectivos , Clasificación del Tumor , Genómica , Progresión de la Enfermedad
16.
Adv Anat Pathol ; 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37072903

RESUMEN

Despite the innovations made to enhance smarter screening and conservative management for low-grade prostate cancer, overdiagnosis, and overtreatment remains a major health care problem. Driven by the primary goal of reducing harm to the patients, relabeling of nonlethal grade group 1 (GG 1) prostate cancer has been proposed but faced varying degrees of support and objection from clinicians and pathologists. GG 1 tumor exhibits histologic (invasive) and molecular features of cancer but paradoxically, if pure, is unable to metastasize, rarely extends out of the prostate, and if resected, has a cancer-specific survival approaching 100%. Most of the arguments against relabeling GG 1 relate to concerns of missing a higher-grade component through the unsampled area at biopsy. However, the designation of tumor benignity or malignancy should not be based on the shortcomings of a diagnostic procedure and sampling errors. This review explores possible solutions, mainly the feasibility of renaming GG 1 in radical prostatectomy (RP) with ramifications in biopsy diagnosis, acceptable for both pathologists and clinicians. One workable approach is to rename GG 1 in RP with a cautious neutral or nonbenign non-cancer term (eg, acinar neoplasm) using "defined criteria" that will stop the indiscriminate reporting of every GG 1 in biopsy as carcinoma including eventual insignificant microtumors in RPs. Use of a corresponding noncommittal term at biopsy while commenting on the possibility of an undersampled nonindolent cancer, might reduce the pathologist's concerns about upgrading. Dropping the word "carcinoma" in biopsy preempts the negative consequences of labeling the patient with cancer, including unnecessary definitive therapy (the root cause of overtreatment). Renaming should retain the status quo of contemporary grading and risk stratifications for management algorithms while trying to minimize overtreatment. However, the optimal approach to find answers to this issue is through multidisciplinary discussions of key stakeholders with a specific focus on patient-centered concerns and their ramifications in our practices. GG 1 renaming has been brought up in the past and came up again despite the continued counterarguments, and if not addressed more comprehensively will likely continue to reemerge as overdiagnosis, overtreatment, and patient's sufferings persist.

18.
Magn Reson Imaging ; 99: 48-57, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36641104

RESUMEN

Multi-parametric MRI (mpMRI) has proven itself a clinically useful tool to assess prostate cancer (PCa). Our objective was to generate PCa risk maps to quantify the volume and location of both all PCa and high grade (Gleason grade group ≥ 3) PCa. Such capabilities would aid physicians and patients in treatment decisions, targeting biopsy, and planning focal therapy. A cohort of men with biopsy proven prostate cancer and pre-prostatectomy mpMRI were studied. PCa and benign ROIs (1524) were identified on mpMRI and histopathology with histopathology serving as the reference standard. Logistic regression models were created to differentiate PCa from benign tissues. The MRI images were registered to ensure correct overlay. The cancer models were applied to each image voxel within prostates to create probability maps of cancer and of high-grade cancer. Use of an optimum probability threshold quantified PCa volume for all lesions >0.1 cc. Accuracies were calculated using area under the curve (AUC) for the receiver operating characteristic (ROC). The PCa models utilized apparent diffusion coefficient (ADC), T2 weighted (T2W), dynamic contrast-enhanced MRI (DCE MRI) enhancement slope, and DCE MRI washout as the statistically significant MRI scans. Application of the PCa maps method provided total PCa volume and individual lesion volumes. The AUCs derived from lesion analysis were 0.91 for all PCa and 0.73 for high-grade PCa. At the optimum threshold, the PCa maps detected 135 / 150 (90%) histopathological lesions >0.1 cc. This study showed the feasibility of cancer risk maps, created from pre-prostatectomy, mpMR images validated with histopathology, to detect PCa lesions >0.1 cc. The method quantified the volume of cancer within the prostate. Method improvements were identified by determining root causes for over and underestimation of cancer volumes. The maps have the potential for improved non-invasive capability in quantitative detection, localization, volume estimation, and MRI characterization of PCa.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Próstata , Masculino , Humanos , Próstata/patología , Neoplasias de la Próstata/patología , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Estándares de Referencia , Estudios Retrospectivos
19.
Int J Radiat Oncol Biol Phys ; 116(3): 521-529, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596347

RESUMEN

PURPOSE: Decipher is a genomic classifier (GC) prospectively validated postprostatectomy. We validated the performance of the GC in pretreatment biopsy samples within the context of 3 randomized phase 3 high-risk definitive radiation therapy trials. METHODS AND MATERIALS: A prespecified analysis plan (NRG-GU-TS006) was approved to obtain formalin-fixed paraffin-embedded tissue from biopsy specimens from the NRG biobank from patients enrolled in the NRG/Radiation Therapy Oncology Group (RTOG) 9202, 9413, and 9902 phase 3 randomized trials. After central review, the highest-grade tumors were profiled on clinical-grade whole-transcriptome arrays and GC scores were obtained. The primary objective was to validate the independent prognostic ability for the GC for distant metastases (DM), and secondary for prostate cancer-specific mortality (PCSM) and overall survival (OS) with Cox univariable and multivariable analyses. RESULTS: GC scores were obtained on 385 samples, of which 265 passed microarray quality control (69%) and had a median follow-up of 11 years (interquartile range, 9-13). In the pooled cohort, on univariable analysis, the GC was shown to be a prognostic factor for DM (per 0.1 unit; subdistribution hazard ratio [sHR], 1.29; 95% confidence interval [CI], 1.18-1.41; P < .001), PCSM (sHR, 1.28; 95% CI, 1.16-1.41; P < .001), and OS (hazard ratio [HR], 1.16; 95% CI, 1.08-1.22; P < .001). On multivariable analyses, the GC (per 0.1 unit) was independently associated with DM (sHR, 1.22; 95% CI, 1.09-1.36), PCSM (sHR, 1.23; 95% CI, 1.09-1.39), and OS (HR, 1.12; 95% CI, 1.05-1.20) after adjusting for age, Prostate Specific Antigen, Gleason score, cT stage, trial, and randomized treatment arm. GC had similar prognostic ability in patients receiving short-term or long-term androgen-deprivation therapy, but the absolute improvement in outcome varied by GC risk. CONCLUSIONS: This is the first validation of a gene expression biomarker on pretreatment prostate cancer biopsy samples from prospective randomized trials and demonstrates an independent association of GC score with DM, PCSM, and OS. High-risk prostate cancer is a heterogeneous disease state, and GC can improve risk stratification to help personalize shared decision making.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/patología , Antagonistas de Andrógenos , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto , Antígeno Prostático Específico , Genómica , Clasificación del Tumor , Biopsia
20.
Contemp Clin Trials ; 125: 107079, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36621597

RESUMEN

BACKGROUND: Nutrition and physical activity are associated with prostate cancer recurrence and mortality. Few randomized controlled trials (RCT) have examined the effects of long-term exercise and diet changes on prostate cancer clinical, biological, and patient-reported outcomes. METHODS: Prostate 8-II is a 4-arm RCT among 200 men with prostate cancer who chose radical prostatectomy (RP) as their primary treatment. Men are enrolled prior to RP and randomized to exercise-only, diet-only, exercise + diet, or usual care (50/arm). Participants begin their assigned intervention 0-5 weeks prior to RP and continue for 24-months following surgery. The 3 active intervention arms receive access to a web-portal and text messages, coaching calls, and other intervention resources (e.g., heart rate sensor and resistance bands and/or recipe booklet). Weekly exercise goals for the exercise intervention groups are 150 min moderate or 75 min vigorous aerobic exercise, 2 strength sessions, and 2 flexibility sessions. Diet intervention groups work with a dietitian to customize their goals (e.g., increase cruciferous vegetables, cooked tomatoes, healthy fats, fish; limit processed meats, whole milk). The primary endpoint is biochemical recurrence. Secondary endpoints include change in tumor biomarkers from biopsy to RP as well as patient-reported outcomes (e.g., quality-of-life), blood and urine biomarkers, and anthropometry at 0, 6, 12, and 24 months. CONCLUSION: This 4-arm RCT will examine the impact of change in exercise and diet (alone or in combination) on prostate cancer recurrence, biology, and quality-of-life.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Próstata/patología , Recurrencia Local de Neoplasia , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/patología , Dieta , Ejercicio Físico , Prostatectomía/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...