RESUMEN
BACKGROUND: COVID-19 convalescent plasma (CCP) remains a treatment option for immunocompromised patients; however, the current FDA qualification threshold of ≥200 BAU/mL of spike antibody appears to be relatively low. We evaluated the levels of binding (bAb) and neutralizing antibodies (nAb) on serial samples from repeat blood donors who were vaccinated and/or infected to inform criteria for qualifying CCP from routinely collected plasma components. METHODS: Donors were categorized into four groups: (1) infected, then vaccinated, (2) vaccinated then infected during the delta, or (3) omicron waves, (4) vaccinated without infection. IgG Spike and total Nuclecapsid bAb were measured, along with S variants and nAb titers using reporter viral particle neutralization. RESULTS: Mean S IgG bAb peaks after infection alone were lower than after primary and booster vaccinations, and higher after delta and omicron infection in previously vaccinated donors. Half-lives for S IgG ranged from 34 to 66 days after first infection/vaccination events and up to 108 days after second events. The levels of S IgG bAb and nAb were similar across different variants, except for omicron, which were lower. Better correlations of nAb with bAb were observed at higher levels (hybrid immunity) than at the current FDA CCP qualifying threshold. DISCUSSION: Routine plasma donations from donors with hybrid immunity had high S bAb and potent neutralizing activity for 3-6 months after infection. In donations with high (>4000 BAU/mL) S IgG, >95% had high nAb titers (>500) against ancestral and variant S, regardless of COVID-19 symptoms. These findings provide the basis for test-based criteria for qualifying CCP from routine blood donations.
RESUMEN
In response to the 2015 Zika virus (ZIKV) epidemic that occurred in Brazil, numerous commercial serological assays have been developed for clinical and research applications. Diagnosis of recent infection in pregnant women remains challenging. Having standardized, comparative studies of ZIKV tests is important for implementing optimal diagnostic testing and disease surveillance. This is especially important for serology tests used to detect ZIKV infection given that antibodies against ZIKV can cross-react with other arboviruses in the same virus family, such as dengue virus (DENV), yellow fever virus (YFV) and West Nile virus (WNV). We looked at the sensitivity and specificity of tests detecting ZIKV antibodies (IgM, IgG) from multiple manufacturers using panels of samples previously collected with known exposure to ZIKV and other arboviruses. We found that performance of the IgM tests was highly variable, with only one test (Inbios 2.0 IgM capture ELISA) having both high sensitivity and specificity. All IgG tests showed good sensitivity; however, specificity was highly variable, with some assays giving false-positive results on samples infected by another flavivirus. Overall, the results confirmed that accurate ZIKV antibody testing is challenging, especially in specimens from regions endemic for multiple other flaviviruses, and highlight the importance of available and suitable reference samples to evaluate ZIKV diagnostics.
Asunto(s)
Anticuerpos Antivirales , Inmunoglobulina G , Inmunoglobulina M , Sensibilidad y Especificidad , Pruebas Serológicas , Infección por el Virus Zika , Virus Zika , Humanos , Virus Zika/inmunología , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/sangre , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Pruebas Serológicas/métodos , Pruebas Serológicas/normas , Inmunoglobulina M/sangre , Inmunoglobulina G/sangre , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/normas , Reacciones Cruzadas/inmunología , Femenino , Embarazo , BrasilRESUMEN
The ongoing evolution of SARS-CoV-2 to evade vaccines and therapeutics underlines the need for innovative therapies with high genetic barriers to resistance. Therefore, there is pronounced interest in identifying new pharmacological targets in the SARS-CoV-2 viral life cycle. The small molecule PAV-104, identified through a cell-free protein synthesis and assembly screen, was recently shown to target host protein assembly machinery in a manner specific to viral assembly. In this study, we investigate the capacity of PAV-104 to inhibit SARS-CoV-2 replication in human airway epithelial cells (AECs). We show that PAV-104 inhibits >99% of infection with diverse SARS-CoV-2 variants in immortalized AECs, and in primary human AECs cultured at the air-liquid interface (ALI) to represent the lung microenvironment in vivo. Our data demonstrate that PAV-104 inhibits SARS-CoV-2 production without affecting viral entry, mRNA transcription, or protein synthesis. PAV-104 interacts with SARS-CoV-2 nucleocapsid (N) and interferes with its oligomerization, blocking particle assembly. Transcriptomic analysis reveals that PAV-104 reverses SARS-CoV-2 induction of the type-I interferon response and the maturation of nucleoprotein signaling pathway known to support coronavirus replication. Our findings suggest that PAV-104 is a promising therapeutic candidate for COVID-19 with a mechanism of action that is distinct from existing clinical management approaches.
Asunto(s)
Antivirales , Células Epiteliales , SARS-CoV-2 , Replicación Viral , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos , Células Epiteliales/virología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Antivirales/farmacología , Ensamble de Virus/efectos de los fármacos , COVID-19/virología , Tratamiento Farmacológico de COVID-19RESUMEN
Definitive data demonstrating the utility of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) for treating immunocompromised patients remains elusive. To better understand the mechanism of action of CCP, we studied viral replication and disease progression in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected hamsters treated with CCP obtained from recovered COVID-19 patients that were also vaccinated with an mRNA vaccine, hereafter referred to as Vaxplas. Vaxplas transiently enhanced disease severity and lung pathology in hamsters treated near peak viral replication due to immune complex and activated complement deposition in pulmonary endothelium, and recruitment of M1 proinflammatory macrophages into the lung parenchyma. However, aside from one report, transient enhanced disease has not been reported in CCP recipient patients, and the transient enhanced disease in Vaxplas hamsters may have been due to mismatched species IgG-FcR interactions, infusion timing, or other experimental factors. Despite transient disease enhancement, Vaxplas dramatically reduced virus replication in lungs and improved infection outcome in SARS-CoV-2-infected hamsters.
Asunto(s)
Anticuerpos Antivirales , Sueroterapia para COVID-19 , Vacunas contra la COVID-19 , COVID-19 , Inmunización Pasiva , Pulmón , SARS-CoV-2 , Replicación Viral , Animales , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , Cricetinae , Pulmón/virología , Pulmón/inmunología , Pulmón/patología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Humanos , Mesocricetus , Modelos Animales de Enfermedad , Masculino , FemeninoRESUMEN
Coronavirus spike glycoproteins presented on the virion surface mediate receptor binding, and membrane fusion during virus entry and constitute the primary target for vaccine and drug development. How the structure dynamics of the full-length spikes incorporated in viral lipid envelope correlates with the virus infectivity remains poorly understood. Here we present structures and distributions of native spike conformations on vitrified human coronavirus NL63 (HCoV-NL63) virions without chemical fixation by cryogenic electron tomography (cryoET) and subtomogram averaging, along with site-specific glycan composition and occupancy determined by mass spectrometry. The higher oligomannose glycan shield on HCoV-NL63 spikes than on SARS-CoV-2 spikes correlates with stronger immune evasion of HCoV-NL63. Incorporation of cryoET-derived native spike conformations into all-atom molecular dynamic simulations elucidate the conformational landscape of the glycosylated, full-length spike that reveals a role of hinge glycans in modulating spike bending. We show that glycosylation at N1242 at the upper portion of the stalk is responsible for the extensive orientational freedom of the spike crown. Subsequent infectivity assays implicated involvement of N1242-glyan in virus entry. Our results suggest a potential therapeutic target site for HCoV-NL63.
Asunto(s)
SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/metabolismo , Simulación de Dinámica Molecular , Glicosilación , PolisacáridosRESUMEN
The utility of COVID-19 convalescent plasma (CCP) for treatment of immunocompromised patients who are not able to mount a protective antibody response against SARS-CoV-2 and who have contraindications or adverse effects from currently available antivirals remains unclear. To better understand the mechanism of protection in CCP, we studied viral replication and disease progression in SARS-CoV-2 infected hamsters treated with CCP plasma obtained from recovered COVID patients that had also been vaccinated with an mRNA vaccine, hereafter referred to as Vaxplas. We found that Vaxplas dramatically reduced virus replication in the lungs and improved infection outcome in SARS-CoV-2 infected hamsters. However, we also found that Vaxplas transiently enhanced disease severity and lung pathology in treated animals likely due to the deposition of immune complexes, activation of complement and recruitment of increased numbers of macrophages with an M1 proinflammatory phenotype into the lung parenchyma.
RESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a global economic and health crisis. Recently, plasma levels of galectin-9 (Gal-9), a ß-galactoside-binding lectin involved in immune regulation and viral immunopathogenesis, were reported to be elevated in the setting of severe COVID-19 disease. However, the impact of Gal-9 on SARS-CoV-2 infection and immunopathology remained to be elucidated. In this study, we demonstrate that Gal-9 treatment potently enhances SARS-CoV-2 replication in human airway epithelial cells (AECs), including immortalized AECs and primary AECs cultured at the air-liquid interface. Gal-9-glycan interactions promote SARS-CoV-2 attachment and entry into AECs in an angiotensin-converting enzyme 2 (ACE2)-dependent manner, enhancing the binding of the viral spike protein to ACE2. Transcriptomic analysis revealed that Gal-9 and SARS-CoV-2 infection synergistically induced the expression of key pro-inflammatory programs in AECs, including the IL-6, IL-8, IL-17, EIF2, and TNFα signaling pathways. Our findings suggest that manipulation of Gal-9 should be explored as a therapeutic strategy for SARS-CoV-2 infection.
Asunto(s)
COVID-19 , Galectinas , SARS-CoV-2 , Replicación Viral , Humanos , Enzima Convertidora de Angiotensina 2 , COVID-19/metabolismo , COVID-19/virología , Células Epiteliales/metabolismo , Células Epiteliales/virología , Galectinas/metabolismo , Inflamación/metabolismo , Inflamación/virología , SARS-CoV-2/fisiologíaRESUMEN
Early detection of Zika virus (ZIKV) transmission within geographic regions informs implementation of community mitigation measures such as vector reduction strategies, travel advisories, enhanced surveillance among pregnant women, and possible implementation of blood and organ donor screening or deferral. Standardized, comparative assessments of ZIKV assay and testing lab performance are important to develop optimal approaches to ZIKV diagnostic testing and surveillance. We conducted an expanded blinded panel study to characterize and compare the analytical performance of fifteen diagnostic and blood screening ZIKV NAT assays, including detection among single- and multiplex assays detecting ZIKV, dengue virus (DENV) and chikungunya virus (CHIKV). A 300 member blinded panel was constructed, consisting of 11 serial half-log dilutions ranging from ~104 to 10-1 genome equivalents/mL in 25 replicates each of the Tahitian Asian ZIKV isolate in ZIKV-negative human serum. Additionally, clinical samples from individuals with DENV-like syndrome or suspected ZIKV infection in Brazil were evaluated. The majority of assays demonstrated good specificity. Analytical sensitivities varied 1-2 logs, with a substantially higher limit of detection (LOD) in one outlier. Similar analytical sensitivity for ZIKV RNA detection in singleplex and multiplex assays of the Grifols and ThermoFisher tests were observed. Coefficient of Assay Efficiency (CE), calculated to characterize assays' RNA extraction and amplification efficiency, ranged from 0.13 for the Certest VIASURE multiplex and 0.75 for the Grifols multiplex assays. In general, assays using transcription mediated amplification (TMA) technology had greater CE compared to assays using conventional PCR technology. Donor screening NAT assays were significantly more sensitive than diagnostic RT-qPCR assays, primarily attributable to higher sample input volumes. However, ideal assays to maximize sensitivity and throughput may not be a viable option in all contexts, with other factors such as cost, instrumentation, and regulatory approval status influencing assay availability and selection, particularly in resource constrained settings.
Asunto(s)
Fiebre Chikungunya , Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Embarazo , Femenino , Humanos , Virus Zika/genética , Dengue/epidemiología , Virus del Dengue/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , ARNRESUMEN
Coronavirus spike glycoproteins presented on the virion surface mediate receptor binding, and membrane fusion during virus entry and constitute the primary target for vaccine and drug development. How the structure dynamics of the full-length spikes incorporated in viral lipid envelope correlates with the virus infectivity remains poorly understood. Here we present structures and distributions of native spike conformations on vitrified human coronavirus NL63 (HCoV-NL63) virions without chemical fixation by cryogenic electron tomography (cryoET) and subtomogram averaging, along with site-specific glycan composition and occupancy determined by mass spectroscopy. The higher oligomannose glycan shield on HCoV-NL63 spikes than on SARS-CoV-2 spikes correlates with stronger immune evasion of HCoV-NL63. Incorporation of cryoET-derived native spike conformations into all-atom molecular dynamic simulations elucidate the conformational landscape of the glycosylated, full-length spike that reveals a novel role of stalk glycans in modulating spike bending. We show that glycosylation at N1242 at the upper portion of the stalk is responsible for the extensive orientational freedom of the spike crown. Subsequent infectivity assays support the hypothesis that this glycan-dependent motion impacts virus entry. Our results suggest a potential therapeutic target site for HCoV-NL63.
RESUMEN
BACKGROUND: Zika virus (ZIKV) epidemics with infections in pregnant women are associated with severe neurological disease in newborns. Although an arbovirus, ZIKV is also blood transfusion-transmitted (TT). Greater knowledge of the efficiency of ZIKV TT would aid decisions on testing and pathogen reduction technologies (PRT). STUDY DESIGN AND METHODS: Plasma units from ZIKV RNA-reactive blood donors were used to study infectivity in vitro, in mice, and in macaques. Furthermore, plasma units were subjected to PRT using amotosalen/ultraviolet light A (A/UVA) before transfusion. RESULTS: In vitro infectivity of ZIKV RNA-reactive plasma varied between 100 and 1000 international units (IU) of ZIKV RNA. Immunodeficient mice were more sensitive with as low as 32 IU sufficient to infect 50% of mice. 50-5500 IU of RNA led to TT in macaques using dose escalation of three different RNA-positive, seronegative plasma units. In contrast, RNA-reactive units collected postseroconversion were not infectious in macaques, even at a dose of 9 million IU RNA. After A/UVA PRT, transfusion of plasma containing up to 18 million IU was no longer infectious in vitro and did not result in ZIKV TT in macaques. CONCLUSION: Significant risks of ZIKV TT are likely confined to a relatively short viremic window before seroconversion, and that sensitive nucleic acid amplification testing likely identifies the majority of infectious plasma. PRT was demonstrated to be effective at preventing ZIKV TT. Considering that there is no approved ZIKV vaccine, these data are relevant to mitigate the risk of TT during the future ZIKV outbreaks.
Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Femenino , Humanos , Ratones , Embarazo , Transfusión de Componentes Sanguíneos , Transfusión Sanguínea , Plasma , ARN Viral , Virus Zika/genética , Infección por el Virus Zika/epidemiologíaRESUMEN
BACKGROUND: Several studies have demonstrated neutralizing antibodies to be highly effective against alphavirus infection in animal models, both prophylactically and remedially. In most studies, neutralizing antibodies have been evaluated for their ability to block viral entry in vitro but recent evidence suggests that antibody inhibition through other mechanisms, including viral budding/release, significantly contributes to viral control in vivo for a number of alphaviruses. RESULTS: We describe a BSL-2, cell-based, high-throughput screening system that specifically screens for inhibitors of alphavirus egress using chikungunya virus (CHIKV) and Mayaro virus (MAYV) novel replication competent nano-luciferase (nLuc) reporter viruses. Screening of both polyclonal sera and memory B-cell clones from CHIKV immune individuals using the optimized assay detected several antibodies that display potent anti-budding activity. CONCLUSIONS: We describe an "anti-budding assay" to specifically screen for inhibitors of viral egress using novel CHIKV and MAYV nLuc reporter viruses. This BSL-2 safe, high-throughput system can be utilized to explore neutralizing "anti-budding" antibodies to yield potent candidates for CHIKV and MAYV therapeutics and prophylaxis.
Asunto(s)
Infecciones por Alphavirus , Alphavirus , Fiebre Chikungunya , Virus Chikungunya , Animales , Ensayos Analíticos de Alto Rendimiento , Virus Chikungunya/fisiología , Anticuerpos Neutralizantes , Internalización del Virus , Anticuerpos AntiviralesRESUMEN
BACKGROUND: Efficacy of donated COVID-19 convalescent plasma (dCCP) is uncertain and may depend on antibody titers, neutralizing capacity, timing of administration, and patient characteristics. STUDY DESIGN AND METHODS: In a single-center hypothesis-generating prospective case-control study with 1:2 matched dCCP recipients to controls according to disease severity at day 1, hospitalized adults with COVID-19 pneumonia received 2 × 200 ml pathogen-reduced treated dCCP from 2 different donors. We evaluated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in COVID-19 convalescent plasma donors and recipients using multiple antibody assays including a Coronavirus antigen microarray (COVAM), and binding and neutralizing antibody assays. Outcomes were dCCP characteristics, antibody responses, 28-day mortality, and dCCP -related adverse events in recipients. RESULTS: Eleven of 13 dCCPs (85%) contained neutralizing antibodies (nAb). PRT did not affect dCCP antibody activity. Fifteen CCP recipients and 30 controls (median age 64 and 65 years, respectively) were enrolled. dCCP recipients received 2 dCCPs from 2 different donors after a median of one hospital day and 11 days after symptom onset. One dCCP recipient (6.7%) and 6 controls (20%) died (p = 0.233). We observed no dCCP-related adverse events. Transfusion of unselected dCCP led to heterogeneous SARS CoV-2 antibody responses. COVAM clustered dCCPs in 4 distinct groups and showed endogenous immune responses to SARS-CoV-2 antigens over 14-21 days post dCCP in all except 4 immunosuppressed recipients. DISCUSSION: PRT did not impact dCCP anti-virus neutralizing activity. Transfusion of unselected dCCP did not impact survival and had no adverse effects. Variable dCCP antibodies and post-transfusion antibody responses indicate the need for controlled trials using well-characterized dCCP with informative assays.
Asunto(s)
COVID-19 , SARS-CoV-2 , Anciano , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/terapia , Estudios de Casos y Controles , Humanos , Inmunización Pasiva , Persona de Mediana Edad , Sueroterapia para COVID-19RESUMEN
Respiratory viruses such as influenza do not typically cause viremia; however, SARS-CoV-2 has been detected in the blood of COVID-19 patients with mild and severe symptoms. Detection of SARS-CoV-2 in blood raises questions about its role in pathogenesis as well as transfusion safety concerns. Blood donor reports of symptoms or a diagnosis of COVID-19 after donation (post-donation information, PDI) preceded or coincided with increased general population COVID-19 mortality. Plasma samples from 2,250 blood donors who reported possible COVID-19-related PDI were tested for the presence of SARS-CoV-2 RNA. Detection of RNAemia peaked at 9%-15% of PDI donors in late 2020 to early 2021 and fell to approximately 4% after implementation of widespread vaccination in the population. RNAemic donors were 1.2- to 1.4-fold more likely to report cough or shortness of breath and 1.8-fold more likely to report change in taste or smell compared with infected donors without detectable RNAemia. No infectious virus was detected in plasma from RNAemic donors; inoculation of permissive cell lines produced less than 0.7-7 plaque-forming units (PFU)/mL and in susceptible mice less than 100 PFU/mL in RNA-positive plasma based on limits of detection in these models. These findings suggest that blood transfusions are highly unlikely to transmit SARS-CoV-2 infection.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Donantes de Sangre , COVID-19/diagnóstico , Humanos , Ratones , ARN Viral , SARS-CoV-2/genética , ViremiaRESUMEN
An easily implementable serological assay to accurately detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies is urgently needed to better track herd immunity, vaccine efficacy and vaccination rates. Herein, we report the Split-Oligonucleotide Neighboring Inhibition Assay (SONIA) which uses real-time qPCR to measure the ability of neutralizing antibodies to block binding between DNA-barcoded viral spike protein subunit 1 and the human angiotensin-converting enzyme 2 receptor protein. The SONIA neutralizing antibody assay using finger-prick dried blood spots displays 91-97% sensitivity and 100% specificity in comparison to the live-virus neutralization assays using matched serum specimens for multiple SARS-CoV-2 variants-of-concern. The multiplex version of this neutralizing antibody assay, using easily collectable finger-prick dried blood spots, can be a valuable tool to help reveal the impact of age, pre-existing health conditions, waning immunity, different vaccination schemes and the emergence of new variants-of-concern.
Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Pruebas de Neutralización , Reacción en Cadena de la Polimerasa , SARS-CoV-2/genética , Glicoproteína de la Espiga del CoronavirusRESUMEN
Chikungunya virus (CHIKV) is a representative alphavirus causing debilitating arthritogenic disease in humans. Alphavirus particles assemble into two icosahedral layers: the glycoprotein spike shell embedded in a lipid envelope and the inner nucleocapsid (NC) core. In contrast to matrix-driven assembly of some enveloped viruses, the assembly/budding process of two-layered icosahedral particles remains poorly understood. Here we used cryogenic electron tomography (cryo-ET) to capture snapshots of the CHIKV assembly in infected human cells. Subvolume classification of the snapshots revealed 12 intermediates representing different stages of assembly at the plasma membrane. Further subtomogram average structures ranging from subnanometre to nanometre resolutions show that immature non-icosahedral NCs function as rough scaffolds to trigger icosahedral assembly of the spike lattice, which in turn progressively transforms the underlying NCs into icosahedral cores during budding. Further, analysis of CHIKV-infected cells treated with budding-inhibiting antibodies revealed wider spaces between spikes than in icosahedral spike lattice, suggesting that spacing spikes apart to prevent their lateral interactions prevents the plasma membrane from bending around the NC, thus blocking virus budding. These findings provide the molecular mechanisms for alphavirus assembly and antibody-mediated budding inhibition that provide valuable insights for the development of broad therapeutics targeting the assembly of icosahedral enveloped viruses.
Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Tomografía con Microscopio Electrónico , Humanos , Nucleocápside/metabolismo , Ensamble de Virus , Liberación del VirusRESUMEN
The redox status of the cysteine-rich SARS-CoV-2 spike glycoprotein (SARS-2-S) is important for the binding of SARS-2-S to angiotensin-converting enzyme 2 (ACE2), suggesting that drugs with a functional thiol group ("thiol drugs") may cleave cystines to disrupt SARS-CoV-2 cell entry. In addition, neutrophil-induced oxidative stress is a mechanism of COVID-19 lung injury, and the antioxidant and anti-inflammatory properties of thiol drugs, especially cysteamine, may limit this injury. To first explore the antiviral effects of thiol drugs in COVID-19, we used an ACE-2 binding assay and cell entry assays utilizing reporter pseudoviruses and authentic SARS-CoV-2 viruses. We found that multiple thiol drugs inhibit SARS-2-S binding to ACE2 and virus infection. The most potent drugs were effective in the low millimolar range, and IC50 values followed the order of their cystine cleavage rates and lower thiol pKa values. To determine if thiol drugs have antiviral effects in vivo and to explore any anti-inflammatory effects of thiol drugs in COVID-19, we tested the effects of cysteamine delivered intraperitoneally to hamsters infected with SARS-CoV-2. Cysteamine did not decrease lung viral infection, but it significantly decreased lung neutrophilic inflammation and alveolar hemorrhage. We speculate that the concentration of cysteamine achieved in the lungs with intraperitoneal delivery was insufficient for antiviral effects but sufficient for anti-inflammatory effects. We conclude that thiol drugs decrease SARS-CoV-2 lung inflammation and injury, and we provide rationale for future studies to test if direct (aerosol) delivery of thiol drugs to the airways might also result in antiviral effects.
Asunto(s)
Enzima Convertidora de Angiotensina 2 , Tratamiento Farmacológico de COVID-19 , Antiinflamatorios/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico , Cisteamina/farmacología , Humanos , Peptidil-Dipeptidasa A/metabolismo , Preparaciones Farmacéuticas , SARS-CoV-2 , Compuestos de Sulfhidrilo/farmacologíaRESUMEN
BACKGROUND: This study evaluated whether pathogen reduction technology (PRT) in plasma and platelets using amotosalen/ultraviolet A light (A/UVA) or in red blood cells using amustaline/glutathione (S-303/GSH) may be used as the sole mitigation strategy preventing transfusion-transmitted West Nile (WNV), dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV) viral, and Babesia microti, Trypanosoma cruzi, and Plasmodium parasitic infections. METHODS: Antibody (Ab) status and pathogen loads (copies/mL) were obtained for donations from US blood donors testing nucleic acid (NAT)-positive for WNV, DENV, ZIKV, CHIKV, and B. microti. Infectivity titers derived from pathogen loads were compared to published PRT log10 reduction factors (LRF); LRFs were also reviewed for Plasmodium and T. cruzi. The potential positive impact on donor retention following removal of deferrals from required questioning and testing for WNV, Babesia, Plasmodium, and T. cruzi was estimated for American Red Cross (ARC) donors. RESULTS: A/UVA and S-303/GSH reduced infectivity to levels in accordance with those recognized by FDA as suitable to replace testing for all agents evaluated. If PRT replaced deferrals resulting from health history questions and/or NAT for WNV, Babesia, Plasmodium, and T. cruzi, 27,758 ARC donors could be retained allowing approximately 50,000 additional donations/year based on 1.79 donations/donor for calendar year 2019 (extrapolated to an estimated 125,000 additional donations nationally). CONCLUSION: Pathogen loads in donations from US blood donors demonstrated that robust PRT may provide an opportunity to replace deferrals associated with donor questioning and NAT for vector-borne agents allowing for significant donor retention and likely increased blood availability.
Asunto(s)
Babesia microti , Fiebre Chikungunya , Reacción a la Transfusión , Infección por el Virus Zika , Virus Zika , Donantes de Sangre , Humanos , Reacción a la Transfusión/prevención & controlRESUMEN
Chikungunya virus (CHIKV) is an arthritogenic reemerging virus replicating in plasma membrane-derived compartments termed "spherules." Here, we identify the human transmembrane protein CD81 as host factor required for CHIKV replication. Ablation of CD81 results in decreased CHIKV permissiveness, while overexpression enhances infection. CD81 is dispensable for virus uptake but critically required for viral genome replication. Likewise, murine CD81 is crucial for CHIKV permissiveness and is expressed in target cells such as dermal fibroblasts, muscle and liver cells. Whereas related alphaviruses, including Ross River virus (RRV), Semliki Forest virus (SFV), Sindbis virus (SINV) and Venezuelan equine encephalitis virus (VEEV), also depend on CD81 for infection, RNA viruses from other families, such as coronaviruses, replicate independently of CD81. Strikingly, the replication-enhancing function of CD81 is linked to cholesterol binding. These results define a mechanism exploited by alphaviruses to hijack the membrane microdomain-modeling protein CD81 for virus replication through interaction with cholesterol. IMPORTANCE In this study, we discover the tetraspanin CD81 as a host factor for the globally emerging chikungunya virus and related alphaviruses. We show that CD81 promotes replication of viral genomes in human and mouse cells, while virus entry into cells is independent of CD81. This provides novel insights into how alphaviruses hijack host proteins to complete their life cycle. Alphaviruses replicate at distinct sites of the plasma membrane, which are enriched in cholesterol. We found that the cholesterol-binding ability of CD81 is important for its function as an alphavirus host factor. This discovery thus broadens our understanding of the alphavirus replication process and the use of host factors to reprogram cells into virus replication factories.
Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Virus , Animales , Virus Chikungunya/genética , Colesterol/metabolismo , Humanos , Ratones , Tetraspaninas/metabolismo , Replicación Viral/genética , Virus/metabolismoRESUMEN
Although generating high neutralizing antibody levels is a key component of protective immunity after acute viral infection or vaccination, little is known about why some individuals generate high versus low neutralizing antibody titers. Here, we leverage the high-dimensional single-cell profiling capacity of mass cytometry to characterize the longitudinal cellular immune response to Zika virus (ZIKV) infection in viremic blood donors in Puerto Rico. During acute ZIKV infection, we identify widely coordinated responses across innate and adaptive immune cell lineages. High frequencies of multiple activated cell types during acute infection are associated with high titers of ZIKV neutralizing antibodies 6 months post-infection, while stable immune features suggesting a cytotoxic-skewed immune set point are associated with low titers. Our study offers insight into the coordination of immune responses and identifies candidate cellular biomarkers that may offer predictive value in vaccine efficacy trials aimed at inducing high levels of antiviral neutralizing antibodies.
Asunto(s)
Infección por el Virus Zika , Virus Zika , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , VacunaciónRESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a global economic and health crisis. Recently, plasma levels of galectin-9 (Gal-9), a ß-galactoside-binding lectin involved in immune regulation and viral immunopathogenesis, were reported to be elevated in the setting of severe COVID-19 disease. However, the impact of Gal-9 on SARS-CoV-2 infection and immunopathology remained to be elucidated. Here, we demonstrate that Gal-9 treatment potently enhances SARS-CoV-2 replication in human airway epithelial cells (AECs), including primary AECs in air-liquid interface (ALI) culture. Gal-9-glycan interactions promote SARS-CoV-2 attachment and entry into AECs in an ACE2-dependent manner, enhancing the binding affinity of the viral spike protein to ACE2. Transcriptomic analysis revealed that Gal-9 and SARS-CoV-2 infection synergistically induce the expression of key pro-inflammatory programs in AECs including the IL-6, IL-8, IL-17, EIF2, and TNFα signaling pathways. Our findings suggest that manipulation of Gal-9 should be explored as a therapeutic strategy for SARS-CoV-2 infection. Importance: COVID-19 continues to have a major global health and economic impact. Identifying host molecular determinants that modulate SARS-CoV-2 infectivity and pathology is a key step in discovering novel therapeutic approaches for COVID-19. Several recent studies have revealed that plasma concentrations of the human ß-galactoside-binding protein galectin-9 (Gal-9) are highly elevated in COVID-19 patients. In this study, we investigated the impact of Gal-9 on SARS-CoV-2 pathogenesis ex vivo in airway epithelial cells (AECs), the critical initial targets of SARS-CoV-2 infection. Our findings reveal that Gal-9 potently enhances SARS-CoV-2 replication in AECs, interacting with glycans to enhance the binding between viral particles and entry receptors on the target cell surface. Moreover, we determined that Gal-9 accelerates and exacerbates several virus-induced pro-inflammatory programs in AECs that are established signature characteristics of COVID-19 disease and SARS-CoV-2-induced acute respiratory distress syndrome (ARDS). Our findings suggest that Gal-9 is a promising pharmacological target for COVID-19 therapies.