Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Exp Hematol Oncol ; 13(1): 14, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326887

RESUMEN

Brexucabtagene autoleucel CAR-T therapy is highly efficacious in overcoming resistance to Bruton's tyrosine kinase inhibitors (BTKi) in mantle cell lymphoma. However, many patients relapse post CAR-T therapy with dismal outcomes. To dissect the underlying mechanisms of sequential resistance to BTKi and CAR-T therapy, we performed single-cell RNA sequencing analysis for 66 samples from 25 patients treated with BTKi and/or CAR-T therapy and conducted in-depth bioinformatics™ analysis. Our analysis revealed that MYC activity progressively increased with sequential resistance. HSP90AB1 (Heat shock protein 90 alpha family class B member 1), a MYC target, was identified as early driver of CAR-T resistance. CDK9 (Cyclin-dependent kinase 9), another MYC target, was significantly upregulated in Dual-R samples. Both HSP90AB1 and CDK9 expression were correlated with MYC activity levels. Pharmaceutical co-targeting of HSP90 and CDK9 synergistically diminished MYC activity, leading to potent anti-MCL activity. Collectively, our study revealed that HSP90-MYC-CDK9 network is the primary driving force of therapeutic resistance.

2.
Nat Commun ; 15(1): 821, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280850

RESUMEN

Perturbations in gene regulation during palatogenesis can lead to cleft palate, which is among the most common congenital birth defects. Here, we perform single-cell multiome sequencing and profile chromatin accessibility and gene expression simultaneously within the same cells (n = 36,154) isolated from mouse secondary palate across embryonic days (E) 12.5, E13.5, E14.0, and E14.5. We construct five trajectories representing continuous differentiation of cranial neural crest-derived multipotent cells into distinct lineages. By linking open chromatin signals to gene expression changes, we characterize the underlying lineage-determining transcription factors. In silico perturbation analysis identifies transcription factors SHOX2 and MEOX2 as important regulators of the development of the anterior and posterior palate, respectively. In conclusion, our study charts epigenetic and transcriptional dynamics in palatogenesis, serving as a valuable resource for further cleft palate research.


Asunto(s)
Fisura del Paladar , Ratones , Animales , Fisura del Paladar/genética , Multiómica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica
3.
iScience ; 26(9): 107578, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37664629

RESUMEN

Microbial communities reside at the interface between humans and their environment. Whether the microbiome can be leveraged to gain information on human interaction with museum objects is unclear. To investigate this, we selected objects from the Museum für Naturkunde and the Pergamonmuseum in Berlin, Germany, varying in material and size. Using swabs, we collected 126 samples from natural and cultural heritage objects, which were analyzed through 16S rRNA sequencing. By comparing the microbial composition of touched and untouched objects, we identified a microbial signature associated with human skin microbes. Applying this signature to cultural heritage objects, we identified areas with varying degrees of exposure to human contact on the Ishtar gate and Sam'al gate lions. Furthermore, we differentiated objects touched by two different individuals. Our findings demonstrate that the microbiome of museum objects provides insights into the level of human contact, crucial for conservation, heritage science, and potentially provenance research.

4.
Genes (Basel) ; 14(6)2023 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-37372402

RESUMEN

Genetic variation in the mitochondrial genome is linked to important biological functions and various human diseases. Recent progress in single-cell genomics has established single-cell RNA sequencing (scRNAseq) as a popular and powerful technique to profile transcriptomics at the cellular level. While most studies focus on deciphering gene expression, polymorphisms including mitochondrial variants can also be readily inferred from scRNAseq. However, limited attention has been paid to investigate the single-cell landscape of mitochondrial variants, despite the rapid accumulation of scRNAseq data in the community. In addition, a diploid context is assumed for most variant calling tools, which is not appropriate for mitochondrial heteroplasmies. Here, we introduce MitoTrace, an R package for the analysis of mitochondrial genetic variation in bulk and scRNAseq data. We applied MitoTrace to several publicly accessible data sets and demonstrated its ability to robustly recover genetic variants from scRNAseq data. We also validated the applicability of MitoTrace to scRNAseq data from diverse platforms. Overall, MitoTrace is a powerful and user-friendly tool to investigate mitochondrial variants from scRNAseq data.


Asunto(s)
Genómica , Mitocondrias , Humanos , Mitocondrias/genética , Perfilación de la Expresión Génica/métodos , Polimorfismo Genético , Análisis de Secuencia de ARN/métodos
5.
Genomics Proteomics Bioinformatics ; 21(2): 370-384, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35470070

RESUMEN

Single-cell RNA sequencing (scRNA-seq) is revolutionizing the study of complex and dynamic cellular mechanisms. However, cell type annotation remains a main challenge as it largely relies on a priori knowledge and manual curation, which is cumbersome and subjective. The increasing number of scRNA-seq datasets, as well as numerous published genetic studies, has motivated us to build a comprehensive human cell type reference atlas.Here, we present decoding Cell type Specificity (deCS), an automatic cell type annotation method augmented by a comprehensive collection of human cell type expression profiles and marker genes. We used deCS to annotate scRNA-seq data from various tissue types and systematically evaluated the annotation accuracy under different conditions, including reference panels, sequencing depth, and feature selection strategies. Our results demonstrate that expanding the references is critical for improving annotation accuracy. Compared to many existing state-of-the-art annotation tools, deCS significantly reduced computation time and increased accuracy. deCS can be integrated into the standard scRNA-seq analytical pipeline to enhance cell type annotation. Finally, we demonstrated the broad utility of deCS to identify trait-cell type associations in 51 human complex traits, providing deep insights into the cellular mechanisms underlying disease pathogenesis. All documents for deCS, including source code, user manual, demo data, and tutorials, are freely available at https://github.com/bsml320/deCS.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Humanos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Programas Informáticos
6.
Cell Rep ; 41(5): 111576, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323253

RESUMEN

The nuclear pore complex (NPC) comprises more than 30 nucleoporins (NUPs) and is a hallmark of eukaryotes. NUPs have been suggested to be important in regulating gene transcription and 3D genome organization. However, evidence in support of their direct roles remains limited. Here, by Cut&Run, we find that core NUPs display broad but also cell-type-specific association with active promoters and enhancers in human cells. Auxin-mediated rapid depletion of two NUPs demonstrates that NUP93, but not NUP35, directly and specifically controls gene transcription. NUP93 directly activates genes with high levels of RNA polymerase II loading and transcriptional elongation by facilitating full BRD4 recruitment to their active enhancers. dCas9-based tethering confirms a direct and causal role of NUP93 in gene transcriptional activation. Unexpectedly, in situ Hi-C and H3K27ac or H3K4me1 HiChIP results upon acute NUP93 depletion show negligible changesS2211-1247(22)01437-1 of 3D genome organization ranging from A/B compartments and topologically associating domains (TADs) to enhancer-promoter contacts.


Asunto(s)
Proteínas de Complejo Poro Nuclear , Proteínas Nucleares , Humanos , Proteínas de Complejo Poro Nuclear/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Poro Nuclear , Genoma , Cromatina , Proteínas de Ciclo Celular/genética
7.
Patterns (N Y) ; 2(8): 100311, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34430929

RESUMEN

Droplet-based single-cell RNA sequencing (scRNA-seq) has significantly increased the number of cells profiled per experiment and revolutionized the study of individual transcriptomes. However, to maximize the biological signal, robust computational methods are needed to distinguish cell-free from cell-containing droplets. Here, we introduce a novel cell-calling algorithm called EmptyNN, which trains a neural network based on positive-unlabeled learning for improved filtering of barcodes. For benchmarking purposes, we leveraged cell hashing and genetic variation to provide ground truth. EmptyNN accurately removed cell-free droplets while recovering lost cell clusters, and achieved an area under the receiver operating characteristics of 94.73% and 96.30%, respectively. Comparisons to current state-of-the-art cell-calling algorithms demonstrated the superior performance of EmptyNN. EmptyNN was further applied to a single-nucleus RNA sequencing (snRNA-seq) dataset and showed good performance. Therefore, EmptyNN represents a powerful tool to enhance both scRNA-seq and snRNA-seq quality control analyses.

8.
Genes (Basel) ; 12(5)2021 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923155

RESUMEN

Single-cell RNA sequencing of the bronchoalveolar lavage fluid (BALF) samples from COVID-19 patients has enabled us to examine gene expression changes of human tissue in response to the SARS-CoV-2 virus infection. However, the underlying mechanisms of COVID-19 pathogenesis at single-cell resolution, its transcriptional drivers, and dynamics require further investigation. In this study, we applied machine learning algorithms to infer the trajectories of cellular changes and identify their transcriptional programs. Our study generated cellular trajectories that show the COVID-19 pathogenesis of healthy-to-moderate and healthy-to-severe on macrophages and T cells, and we observed more diverse trajectories in macrophages compared to T cells. Furthermore, our deep-learning algorithm DrivAER identified several pathways (e.g., xenobiotic pathway and complement pathway) and transcription factors (e.g., MITF and GATA3) that could be potential drivers of the transcriptomic changes for COVID-19 pathogenesis and the markers of the COVID-19 severity. Moreover, macrophages-related functions corresponded more to the disease severity compared to T cells-related functions. Our findings more proficiently dissected the transcriptomic changes leading to the severity of a COVID-19 infection.


Asunto(s)
Líquido del Lavado Bronquioalveolar/virología , COVID-19/etiología , COVID-19/patología , Macrófagos , Linfocitos T , Algoritmos , COVID-19/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Humanos , Aprendizaje Automático , Macrófagos/fisiología , Macrófagos/virología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual , Linfocitos T/fisiología , Linfocitos T/virología
9.
EMBO Mol Med ; 13(4): e12871, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33650774

RESUMEN

The correspondence of cell state changes in diseased organs to peripheral protein signatures is currently unknown. Here, we generated and integrated single-cell transcriptomic and proteomic data from multiple large pulmonary fibrosis patient cohorts. Integration of 233,638 single-cell transcriptomes (n = 61) across three independent cohorts enabled us to derive shifts in cell type proportions and a robust core set of genes altered in lung fibrosis for 45 cell types. Mass spectrometry analysis of lung lavage fluid (n = 124) and plasma (n = 141) proteomes identified distinct protein signatures correlated with diagnosis, lung function, and injury status. A novel SSTR2+ pericyte state correlated with disease severity and was reflected in lavage fluid by increased levels of the complement regulatory factor CFHR1. We further discovered CRTAC1 as a biomarker of alveolar type-2 epithelial cell health status in lavage fluid and plasma. Using cross-modal analysis and machine learning, we identified the cellular source of biomarkers and demonstrated that information transfer between modalities correctly predicts disease status, suggesting feasibility of clinical cell state monitoring through longitudinal sampling of body fluid proteomes.


Asunto(s)
Proteómica , Fibrosis Pulmonar , Biomarcadores , Líquido del Lavado Bronquioalveolar , Proteínas de Unión al Calcio , Humanos , Proteoma/metabolismo
10.
Cell ; 184(2): 384-403.e21, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33450205

RESUMEN

Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.


Asunto(s)
Antivirales/farmacología , Inmunidad/efectos de los fármacos , Empalmosomas/metabolismo , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Inmunidad Adaptativa/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Femenino , Amplificación de Genes/efectos de los fármacos , Humanos , Intrones/genética , Ratones , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas c-myc/metabolismo , Empalme del ARN/efectos de los fármacos , Empalme del ARN/genética , ARN Bicatenario/metabolismo , Transducción de Señal/efectos de los fármacos , Empalmosomas/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/genética
11.
Genome Res ; 31(1): 146-158, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33272935

RESUMEN

As the most complex organ of the human body, the brain is composed of diverse regions, each consisting of distinct cell types and their respective cellular interactions. Human brain development involves a finely tuned cascade of interactive events. These include spatiotemporal gene expression changes and dynamic alterations in cell-type composition. However, our understanding of this process is still largely incomplete owing to the difficulty of brain spatiotemporal transcriptome collection. In this study, we developed a tensor-based approach to impute gene expression on a transcriptome-wide level. After rigorous computational benchmarking, we applied our approach to infer missing data points in the widely used BrainSpan resource and completed the entire grid of spatiotemporal transcriptomics. Next, we conducted deconvolutional analyses to comprehensively characterize major cell-type dynamics across the entire BrainSpan resource to estimate the cellular temporal changes and distinct neocortical areas across development. Moreover, integration of these results with GWAS summary statistics for 13 brain-associated traits revealed multiple novel trait-cell-type associations and trait-spatiotemporal relationships. In summary, our imputed BrainSpan transcriptomic data provide a valuable resource for the research community and our findings help further studies of the transcriptional and cellular dynamics of the human brain and related diseases.


Asunto(s)
Encefalopatías , Encéfalo , Perfilación de la Expresión Génica , Humanos , Fenotipo , Transcriptoma
12.
Cell Rep ; 33(13): 108552, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33378673

RESUMEN

Extracellular RNAs present in biofluids have emerged as potential biomarkers for disease. Where most studies focus on blood-derived fluids, other biofluids may be more informative. We present an atlas of messenger, circular, and small RNA transcriptomes of a comprehensive collection of 20 human biofluids. By means of synthetic spike-in controls, we compare RNA content across biofluids, revealing a 10,000-fold difference in concentration. The circular RNA fraction is increased in most biofluids compared to tissues. Each biofluid transcriptome is enriched for RNA molecules derived from specific tissues and cell types. Our atlas enables an informed selection of the most relevant biofluid to monitor particular diseases. To verify the biomarker potential in these biofluids, four validation cohorts representing a broad spectrum of diseases were profiled, revealing numerous differential RNAs between case and control subjects. Spike-normalized data are publicly available in the R2 web portal for further exploration.


Asunto(s)
Biomarcadores , Líquidos Corporales/metabolismo , ARN/metabolismo , Transcriptoma , Estudios de Cohortes , Perfilación de la Expresión Génica/métodos , Humanos , ARN/genética , Análisis de Secuencia de ARN/métodos
13.
Gigascience ; 9(12)2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33301553

RESUMEN

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) unfolds complex transcriptomic datasets into detailed cellular maps. Despite recent success, there is a pressing need for specialized methods tailored towards the functional interpretation of these cellular maps. FINDINGS: Here, we present DrivAER, a machine learning approach for the identification of driving transcriptional programs using autoencoder-based relevance scores. DrivAER scores annotated gene sets on the basis of their relevance to user-specified outcomes such as pseudotemporal ordering or disease status. DrivAER iteratively evaluates the information content of each gene set with respect to the outcome variable using autoencoders. We benchmark our method using extensive simulation analysis as well as comparison to existing methods for functional interpretation of scRNA-seq data. Furthermore, we demonstrate that DrivAER extracts key pathways and transcription factors that regulate complex biological processes from scRNA-seq data. CONCLUSIONS: By quantifying the relevance of annotated gene sets with respect to specified outcome variables, DrivAER greatly enhances our ability to understand the underlying molecular mechanisms.


Asunto(s)
ARN , Análisis de la Célula Individual , Perfilación de la Expresión Génica , Aprendizaje Automático , Análisis de Secuencia de ARN , Transcriptoma
14.
Nat Commun ; 11(1): 3559, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678092

RESUMEN

The cell type specific sequences of transcriptional programs during lung regeneration have remained elusive. Using time-series single cell RNA-seq of the bleomycin lung injury model, we resolved transcriptional dynamics for 28 cell types. Trajectory modeling together with lineage tracing revealed that airway and alveolar stem cells converge on a unique Krt8 + transitional stem cell state during alveolar regeneration. These cells have squamous morphology, feature p53 and NFkB activation and display transcriptional features of cellular senescence. The Krt8+ state appears in several independent models of lung injury and persists in human lung fibrosis, creating a distinct cell-cell communication network with mesenchyme and macrophages during repair. We generated a model of gene regulatory programs leading to Krt8+ transitional cells and their terminal differentiation to alveolar type-1 cells. We propose that in lung fibrosis, perturbed molecular checkpoints on the way to terminal differentiation can cause aberrant persistence of regenerative intermediate stem cell states.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Queratina-8/metabolismo , Alveolos Pulmonares/fisiología , Fibrosis Pulmonar/patología , Regeneración , Células Madre/metabolismo , Células Epiteliales Alveolares/citología , Animales , Comunicación Celular , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Queratina-8/genética , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Ratones , Ratones Endogámicos C57BL , Alveolos Pulmonares/citología , Fibrosis Pulmonar/metabolismo , Análisis de la Célula Individual , Células Madre/citología
15.
Circ Res ; 126(4): 501-516, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31852401

RESUMEN

RATIONALE: Longitudinal studies are required to distinguish within versus between-individual variation and repeatability of gene expression. They are uniquely positioned to decipher genetic signal from environmental noise, with potential application to gene variant and expression studies. However, longitudinal analyses of gene expression in healthy individuals-especially with regards to alternative splicing-are lacking for most primary cell types, including platelets. OBJECTIVE: To assess repeatability of gene expression and splicing in platelets and use repeatability to identify novel platelet expression quantitative trait loci (QTLs) and splice QTLs. METHODS AND RESULTS: We sequenced the transcriptome of platelets isolated repeatedly up to 4 years from healthy individuals. We examined within and between individual variation and repeatability of platelet RNA expression and exon skipping, a readily measured alternative splicing event. We find that platelet gene expression is generally stable between and within-individuals over time-with the exception of a subset of genes enriched for the inflammation gene ontology. We show an enrichment among repeatable genes for associations with heritable traits, including known and novel platelet expression QTLs. Several exon skipping events were also highly repeatable, suggesting heritable patterns of splicing in platelets. One of the most repeatable was exon 14 skipping of SELP. Accordingly, we identify rs6128 as a platelet splice QTL and define an rs6128-dependent association between SELP exon 14 skipping and race. In vitro experiments demonstrate that this single nucleotide variant directly affects exon 14 skipping and changes the ratio of transmembrane versus soluble P-selectin protein production. CONCLUSIONS: We conclude that the platelet transcriptome is generally stable over 4 years. We demonstrate the use of repeatability of gene expression and splicing to identify novel platelet expression QTLs and splice QTLs. rs6128 is a platelet splice QTL that alters SELP exon 14 skipping and soluble versus transmembrane P-selectin protein production.


Asunto(s)
Empalme Alternativo , Plaquetas/metabolismo , Selectina-P/genética , Sitios de Carácter Cuantitativo/genética , RNA-Seq/métodos , Transcriptoma/genética , Exones/genética , Ontología de Genes , Humanos , Polimorfismo de Nucleótido Simple
16.
Mol Cancer Res ; 17(11): 2318-2330, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31420371

RESUMEN

Despite effective strategies, resistance in HER2+ breast cancer remains a challenge. While the mevalonate pathway (MVA) is suggested to promote cell growth and survival, including in HER2+ models, its potential role in resistance to HER2-targeted therapy is unknown. Parental HER2+ breast cancer cells and their lapatinib-resistant and lapatinib + trastuzumab-resistant derivatives were used for this study. MVA activity was found to be increased in lapatinib-resistant and lapatinib + trastuzumab-resistant cells. Specific blockade of this pathway with lipophilic but not hydrophilic statins and with the N-bisphosphonate zoledronic acid led to apoptosis and substantial growth inhibition of R cells. Inhibition was rescued by mevalonate or the intermediate metabolites farnesyl pyrophosphate or geranylgeranyl pyrophosphate, but not cholesterol. Activated Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) and mTORC1 signaling, and their downstream target gene product Survivin, were inhibited by MVA blockade, especially in the lapatinib-resistant/lapatinib + trastuzumab-resistant models. Overexpression of constitutively active YAP rescued Survivin and phosphorylated-S6 levels, despite blockade of the MVA. These results suggest that the MVA provides alternative signaling leading to cell survival and resistance by activating YAP/TAZ-mTORC1-Survivin signaling when HER2 is blocked, suggesting novel therapeutic targets. MVA inhibitors including lipophilic statins and N-bisphosphonates may circumvent resistance to anti-HER2 therapy warranting further clinical investigation. IMPLICATIONS: The MVA was found to constitute an escape mechanism of survival and growth in HER2+ breast cancer models resistant to anti-HER2 therapies. MVA inhibitors such as simvastatin and zoledronic acid are potential therapeutic agents to resensitize the tumors that depend on the MVA to progress on anti-HER2 therapies.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos , Ácido Mevalónico/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Transducción de Señal , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Lapatinib/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosforilación , Trastuzumab/farmacología
17.
Nat Med ; 25(7): 1153-1163, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209336

RESUMEN

Human lungs enable efficient gas exchange and form an interface with the environment, which depends on mucosal immunity for protection against infectious agents. Tightly controlled interactions between structural and immune cells are required to maintain lung homeostasis. Here, we use single-cell transcriptomics to chart the cellular landscape of upper and lower airways and lung parenchyma in healthy lungs, and lower airways in asthmatic lungs. We report location-dependent airway epithelial cell states and a novel subset of tissue-resident memory T cells. In the lower airways of patients with asthma, mucous cell hyperplasia is shown to stem from a novel mucous ciliated cell state, as well as goblet cell hyperplasia. We report the presence of pathogenic effector type 2 helper T cells (TH2) in asthmatic lungs and find evidence for type 2 cytokines in maintaining the altered epithelial cell states. Unbiased analysis of cell-cell interactions identifies a shift from airway structural cell communication in healthy lungs to a TH2-dominated interactome in asthmatic lungs.


Asunto(s)
Asma/patología , Pulmón/citología , Adulto , Anciano , Linfocitos T CD4-Positivos/fisiología , Comunicación Celular , Células Epiteliales/inmunología , Células Epiteliales/fisiología , Femenino , Estudio de Asociación del Genoma Completo , Células Caliciformes/metabolismo , Humanos , Pulmón/inmunología , Pulmón/patología , Masculino , Metaplasia , Persona de Mediana Edad , Células Th2/fisiología , Transcriptoma
18.
Am J Respir Cell Mol Biol ; 61(1): 31-41, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30995076

RESUMEN

Lung disease accounts for every sixth death globally. Profiling the molecular state of all lung cell types in health and disease is currently revolutionizing the identification of disease mechanisms and will aid the design of novel diagnostic and personalized therapeutic regimens. Recent progress in high-throughput techniques for single-cell genomic and transcriptomic analyses has opened up new possibilities to study individual cells within a tissue, classify these into cell types, and characterize variations in their molecular profiles as a function of genetics, environment, cell-cell interactions, developmental processes, aging, or disease. Integration of these cell state definitions with spatial information allows the in-depth molecular description of cellular neighborhoods and tissue microenvironments, including the tissue resident structural and immune cells, the tissue matrix, and the microbiome. The Human Cell Atlas consortium aims to characterize all cells in the healthy human body and has prioritized lung tissue as one of the flagship projects. Here, we present the rationale, the approach, and the expected impact of a Human Lung Cell Atlas.


Asunto(s)
Enfermedades Pulmonares/patología , Pulmón/patología , Humanos , Pulmón/metabolismo , Transcriptoma/genética
19.
Nat Commun ; 10(1): 963, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814501

RESUMEN

Aging promotes lung function decline and susceptibility to chronic lung diseases, which are the third leading cause of death worldwide. Here, we use single cell transcriptomics and mass spectrometry-based proteomics to quantify changes in cellular activity states across 30 cell types and chart the lung proteome of young and old mice. We show that aging leads to increased transcriptional noise, indicating deregulated epigenetic control. We observe cell type-specific effects of aging, uncovering increased cholesterol biosynthesis in type-2 pneumocytes and lipofibroblasts and altered relative frequency of airway epithelial cells as hallmarks of lung aging. Proteomic profiling reveals extracellular matrix remodeling in old mice, including increased collagen IV and XVI and decreased Fraser syndrome complex proteins and collagen XIV. Computational integration of the aging proteome with the single cell transcriptomes predicts the cellular source of regulated proteins and creates an unbiased reference map of the aging lung.


Asunto(s)
Envejecimiento/genética , Envejecimiento/metabolismo , Pulmón/metabolismo , Envejecimiento/patología , Animales , Colesterol/biosíntesis , Colágeno/metabolismo , Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Pulmón/citología , Ratones , Ratones Endogámicos C57BL , Proteoma/metabolismo , Proteómica , Análisis de la Célula Individual
20.
Nat Commun ; 10(1): 390, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30674886

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has enabled researchers to study gene expression at a cellular resolution. However, noise due to amplification and dropout may obstruct analyses, so scalable denoising methods for increasingly large but sparse scRNA-seq data are needed. We propose a deep count autoencoder network (DCA) to denoise scRNA-seq datasets. DCA takes the count distribution, overdispersion and sparsity of the data into account using a negative binomial noise model with or without zero-inflation, and nonlinear gene-gene dependencies are captured. Our method scales linearly with the number of cells and can, therefore, be applied to datasets of millions of cells. We demonstrate that DCA denoising improves a diverse set of typical scRNA-seq data analyses using simulated and real datasets. DCA outperforms existing methods for data imputation in quality and speed, enhancing biological discovery.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , ARN/genética , Análisis de Secuencia de ARN/métodos , Animales , Células Sanguíneas , Caenorhabditis elegans/genética , Regulación de la Expresión Génica/genética , Leucocitos Mononucleares , Modelos Estadísticos , Fenotipo , ARN/análisis , ARN Citoplasmático Pequeño/genética , Análisis de la Célula Individual/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA