Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 791: 148099, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34139500

RESUMEN

Livestock urine patches are the main source of nitrous oxide (N2O) emissions in pastoral system, and nitrification inhibitors (NIs) have been widely investigated as a N2O mitigation strategy. This study reviews the current understanding of the effect of NIs use on N2O emissions from urine patches, including the factors that affect their efficacy, as well as the unintended consequences of NIs use. It brings together the fundamental aspects of targeted management of urine patches for reducing N2O emissions involving inhibitors. The available literature of 196 datasets indicates that dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and 2-chloro-6-(trichloromethyl) pyridine (nitrapyrin) reduced N2O emissions from urine patches by 44 ± 2%, 28 ± 38% and 28 ± 5%, (average ± s.e.), respectively. DCD also increased pasture dry matter and nitrogen (N) uptake by 13 ± 2% and 15 ± 3%, (average ± s.e.), respectively. The effect of DMPP and nitrapyrin on pasture dry matter and N uptake, assessed in only one study, was not significant. It also suggests that harmonizing the timing of inhibitor use with urine-N transformation increase the efficacy of NIs. No negative impacts on non-targeted soil and aquatic organisms have been reported with the recommended rate of DCD applied to urine and recommended applications of DMPP and nitrapyrin for treated mineral fertilisers and manures. However, there was evidence of the presence of small amounts of DCD residues in milk products as a result of its use on livestock grazed pasture. DMPP and nitrapyrin can also enter the food chain via grazing livestock. The study concludes that for the use of NIs in livestock grazed systems, research is needed to establish acceptable maximum residue level (MRL) of NIs in soil, plant, and animal products, and develop technologies that optimise physical mixing between NIs and urine patches.


Asunto(s)
Óxido Nitroso , Suelo , Agricultura , Animales , Fertilizantes/análisis , Nitrificación , Óxido Nitroso/análisis
2.
J Environ Qual ; 49(5): 1156-1167, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33016448

RESUMEN

Static chambers are often used for measuring nitrous oxide (N2 O) fluxes from soils, but statistical analysis of chamber data is challenged by the inherently heterogeneous nature of N2 O fluxes. Because N2 O chamber measurements are commonly used to assess N2 O mitigation strategies or to determine country-specific emission factors (EFs) for calculating national greenhouse gas inventories, it is important that statistical analysis of the data is sound and that EFs are robustly estimated. This paper is one of a series of articles that provide guidance on different aspects of N2 O chamber methodologies. Here, we discuss the challenges associated with statistical analysis of heterogeneous data, by summarizing statistical approaches used in recent publications and providing guidance on assessing normality and options for transforming data that follow a non-normal distribution. We also recommend minimum requirements for reporting of experimental and metadata of N2 O studies to ensure that the robustness of the results can be reliably evaluated. This includes detailed information on the experimental site, methodology and measurement procedures, gas analysis, data and statistical analyses, and approaches to generate EFs, as well as results of ancillary measurements. The reliability, robustness, and comparability of soil N2 O emissions data will be improved through (a) application, and reporting, of more rigorous methodological standards by researchers and (b) greater vigilance by reviewers and scientific editors to ensure that all necessary information is reported in scientific publications.


Asunto(s)
Gases de Efecto Invernadero , Proyectos de Investigación , Óxido Nitroso/análisis , Reproducibilidad de los Resultados , Suelo
3.
Sci Total Environ ; 720: 137692, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32325603

RESUMEN

Nitrous oxide (N2O) emissions from pasture-based livestock systems represent 34% of Brazil's agricultural greenhouse gas emissions. The forage species Brachiaria humidicola is known for its biological nitrification inhibition (BNI) capacity and N2O emissions reduction ability from urine patches under tropical conditions. However, there is little information about the effect of BNI on N2O emission and ammonia (NH3) volatilisation in the subtropics. This study aimed to: (i) evaluate the potential of Brachiaria humidicola, compared with Panicum maximum (Jacq. cv. Áries; guinea grass), a broadly used grass (with no BNI capacity), to reduce N2O emissions under subtropical conditions; (ii) determine the efficacy of nitrification inhibitor dicyandiamide (DCD) to decrease N2O emissions; and (iii) determine the effect of brachiaria and DCD application on NH3 volatilisation. A field experiment was carried out using a Cambisol, where cattle urine ± DCD was applied to brachiaria and guinea grass. Over the 67-day measurement period, cumulative N2O emissions were 20% lower from urine patches in the brachiaria treatment (1138 mg N m-2, Emission factor = 1.06%) compared to guinea grass (1436 mg N m-2, Emission factor = 1.33%) (P < .10). A greenhouse experiment, using pots with the same treatments as in the field experiment, suggested that this could have been due to lower soil nitrate levels under brachiaria forage compared to guinea grass, indicating that BNI could be a possible mechanism for lower N2O emissions from brachiaria. The DCD application was effective in both forage species, decreasing N2O emissions by 40-50% (P < .10) compared with the urine only treatment. Approximately 25% of the urine applied N was lost via NH3 volatilisation, however the NH3 loss was not affected by forage species or DCD application (P > .10). Overall, the results demonstrated that brachiaria and DCD use are strategies that can reduce N2O emissions from urine patches.


Asunto(s)
Brachiaria , Agricultura , Contaminantes Atmosféricos , Amoníaco , Animales , Brasil , Bovinos , Fertilizantes , Guanidinas , Óxido Nitroso , Suelo
4.
Sci Total Environ ; 691: 430-441, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31323588

RESUMEN

Urine deposited by grazing animals is the main source of nitrous oxide (N2O) emissions in New Zealand. Recent studies have suggested that certain pasture plants, for example plantain (Plantago lanceolata), can curb N2O emissions from livestock systems. This study aimed to i) evaluate the potential of plantain for reducing N2O emissions from cattle urine patches; ii) determine the effect of including plantain in animal diets on urine-N loading and its influence on N2O emissions; and, iii) evaluate whether any effects on N2O emissions reduction could be attributed to a 'urine' or a 'plant' effect. A static chamber method was used to measure N2O fluxes from urine collected from cows fed a 0, 15, 30 or 45% plantain mixed with "standard" ryegrass/clover (Lolium perenne/Trifolium repens) diet and applied to plots with the corresponding percentage of plantain in the sward. In addition, we measured N2O emissions from different proportions of plantain in the sward (0, 30, 60 and 100%) that received urine collected from cows fed on ryegrass/clover. The urine N loading rates of animals fed plantain, significantly reduced with increasing proportions of plantain in the diet (r2 = 0.987, P < 0.01). There was a trend of lower N2O emissions with an increasing proportion of plantain in the diet (r2 = 0.830, P < 0.08). However, there was no significantly difference in the N2O emission factors (P > 0.10). Following applications of standard urine, total N2O emissions and emission factor reduced linearly as the proportion of plantain in the sward increased (r2 = 0.969, P < 0.05 and 0.974, P < 0.05, respectively). The results suggest that the efficacy of plantain as a N2O mitigation option is due to both a reduction in urinary N excretion and a plant effect. The latter could be due to biological nitrification inhibition (BNI) caused by the release of root exudates and/or changes in the soil microclimate.


Asunto(s)
Contaminantes Atmosféricos/análisis , Biodegradación Ambiental , Óxido Nitroso/análisis , Agricultura/métodos , Animales , Bovinos , Dieta , Ganado , Lolium , Nitrificación , Plantago , Verduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA