Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
2.
Radiat Res ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39021204

RESUMEN

In this article we review the history of key epidemiological studies of populations exposed to ionizing radiation. We highlight historical and recent findings regarding radiation-associated risks for incidence and mortality of cancer and non-cancer outcomes with emphasis on study design and methods of exposure assessment and dose estimation along with brief consideration of sources of bias for a few of the more important studies. We examine the findings from the epidemiological studies of the Japanese atomic bomb survivors, persons exposed to radiation for diagnostic or therapeutic purposes, those exposed to environmental sources including Chornobyl and other reactor accidents, and occupationally exposed cohorts. We also summarize results of pooled studies. These summaries are necessarily brief, but we provide references to more detailed information. We discuss possible future directions of study, to include assessment of susceptible populations, and possible new populations, data sources, study designs and methods of analysis.

3.
Sensors (Basel) ; 24(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39000879

RESUMEN

Competitive climbers engage in highly structured training regimens to achieve peak performance levels, with efficient time management as a critical aspect. Neuromuscular electrical stimulation (NMES) training can close the gap between time-efficient conditioning training and achieving optimal prerequisites for peak climbing-specific performances. Therefore, we examined potential neuromuscular adaptations resulting from the NMFES intervention by analyzing the efficacy of twice-weekly NMES-supported fingerboard (hang board) training compared with thrice-weekly conventional fingerboard training over 7 training weeks in enhancing climbing-specific endurance among intermediate to advanced climbers. Participants were randomly divided into the NMES and control groups. Eighteen participants completed the study (14 male, 4 female; mean age: 25.7 ± 5.3 years; mean climbing experience: 6.4 ± 3.4 years). Endurance was assessed by measuring the maximal time athletes could support their body weight (hanging to exhaustion) on a 20 mm-deep ledge at three intervals: pre-, in-between- (after 4 weeks of training), and post-training (after 7 weeks of training). The findings revealed that despite the lower training volume in the NMES group, no significant differences were observed between the NMES and control groups in climbing-specific endurance. Both groups exhibited notable improvements in endurance, particularly after the in-between test. Consequently, a twice-weekly NMES-supported fingerboard training regimen demonstrated non-inferiority to a thrice-weekly conventional training routine. Incorporating NMES into fingerboard workouts could offer time-saving benefits.


Asunto(s)
Estimulación Eléctrica , Dedos , Resistencia Física , Humanos , Masculino , Femenino , Adulto , Resistencia Física/fisiología , Dedos/fisiología , Estimulación Eléctrica/métodos , Adulto Joven , Atletas , Montañismo/fisiología
4.
PLoS One ; 19(6): e0303261, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38885227

RESUMEN

Drug-induced QT prolongation (diLQTS), and subsequent risk of torsade de pointes, is a major concern with use of many medications, including for non-cardiac conditions. The possibility that genetic risk, in the form of polygenic risk scores (PGS), could be integrated into prediction of risk of diLQTS has great potential, although it is unknown how genetic risk is related to clinical risk factors as might be applied in clinical decision-making. In this study, we examined the PGS for QT interval in 2500 subjects exposed to a known QT-prolonging drug on prolongation of the QT interval over 500ms on subsequent ECG using electronic health record data. We found that the normalized QT PGS was higher in cases than controls (0.212±0.954 vs. -0.0270±1.003, P = 0.0002), with an unadjusted odds ratio of 1.34 (95%CI 1.17-1.53, P<0.001) for association with diLQTS. When included with age and clinical predictors of QT prolongation, we found that the PGS for QT interval provided independent risk prediction for diLQTS, in which the interaction for high-risk diagnosis or with certain high-risk medications (amiodarone, sotalol, and dofetilide) was not significant, indicating that genetic risk did not modify the effect of other risk factors on risk of diLQTS. We found that a high-risk cutoff (QT PGS ≥ 2 standard deviations above mean), but not a low-risk cutoff, was associated with risk of diLQTS after adjustment for clinical factors, and provided one method of integration based on the decision-tree framework. In conclusion, we found that PGS for QT interval is an independent predictor of diLQTS, but that in contrast to existing theories about repolarization reserve as a mechanism of increasing risk, the effect is independent of other clinical risk factors. More work is needed for external validation in clinical decision-making, as well as defining the mechanism through which genes that increase QT interval are associated with risk of diLQTS.


Asunto(s)
Electrocardiografía , Síndrome de QT Prolongado , Herencia Multifactorial , Humanos , Masculino , Femenino , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/inducido químicamente , Persona de Mediana Edad , Herencia Multifactorial/genética , Factores de Riesgo , Anciano , Adulto , Torsades de Pointes/inducido químicamente , Torsades de Pointes/genética , Estudios de Casos y Controles , Fenetilaminas/efectos adversos , Puntuación de Riesgo Genético , Sulfonamidas
5.
Phys Rev Lett ; 132(17): 176502, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38728712

RESUMEN

The ν=1/2+1/2 quantum Hall bilayer has been previsously modeled using Chern-Simons-RPA-Eliashberg (CSRPAE) theory to describe pairing between the two layers. However, these approaches are troubled by a number of divergences and ambiguities. By using a "modified" RPA approximation to account for mass renormalization, we can work in a limit where the cyclotron frequency is taken to infinity, effectively projecting to a single Landau level. This, surprisingly, controls the important divergences and removes ambiguities found in prior attempts at CSRPAE. Examining BCS pairing of composite fermions we find that the angular momentum channel l=+1 dominates for all distances d between layers and at all frequency scales. Examining BCS pairing of composite fermion electrons in one layer with composite fermion holes in the opposite layer, we find the l=0 pairing channel dominates for all d and all frequencies. The strength of the pairing in these two different descriptions of the same phase of matter is found to be almost identical. This agrees well with our understanding that these are two different but dual descriptions of the same phase of matter.

6.
Sensors (Basel) ; 24(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38400333

RESUMEN

(1) Background: Occupational fatigue is a primary factor leading to work-related musculoskeletal disorders (WRMSDs). Kinematic and kinetic experimental studies have been able to identify indicators of WRMSD, but research addressing real-world workplace scenarios is lacking. Hence, the authors of this study aimed to assess the influence of physical strain on the Borg CR-10 body map, ergonomic risk scores, and foot pressure in a real-world setting. (2) Methods: Twenty-four participants (seventeen men and seven women) were included in this field study. Inertial measurement units (IMUs) (n = 24) and in-shoe plantar pressure measurements (n = 18) captured the workload of production and office workers at the beginning of their work shift and three hours later, working without any break. In addition to the two 12 min motion capture processes, a Borg CR-10 body map and fatigue visual analog scale (VAS) were applied twice. Kinematic and kinetic data were processed using MATLAB and SPSS software, resulting in scores representing the relative distribution of the Rapid Upper Limb Assessment (RULA) and Computer-Assisted Recording and Long-Term Analysis of Musculoskeletal Load (CUELA), and in-shoe plantar pressure. (3) Results: Significant differences were observed between the two measurement times of physical exertion and fatigue, but not for ergonomic risk scores. Contrary to the hypothesis of the authors, there were no significant differences between the in-shoe plantar pressures. Significant differences were observed between the dominant and non-dominant sides for all kinetic variables. (4) Conclusions: The posture scores of RULA and CUELA and in-shoe plantar pressure side differences were a valuable basis for adapting one-sided requirements in the work process of the workers. Traditional observational methods must be adapted more sensitively to detect kinematic deviations at work. The results of this field study enhance our knowledge about the use and benefits of sensors for ergonomic risk assessments and interventions.


Asunto(s)
Enfermedades Profesionales , Zapatos , Masculino , Humanos , Femenino , Enfermedades Profesionales/diagnóstico , Ergonomía/métodos , Factores de Riesgo , Fatiga
7.
Front Bioeng Biotechnol ; 12: 1350135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419724

RESUMEN

Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML models, specifically in the human posture domain, are scarce. Therefore, this study explored the feasibility of leveraging generative artificial intelligence (AI) to produce realistic synthetic posture data by utilizing three-dimensional posture data. Methods: Data were collected from 338 subjects through surface topography. A Variational Autoencoder (VAE) architecture was employed to generate and evaluate synthetic posture data, examining its distinguishability from real data by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The benefits of incorporating augmented posture data into the learning process were exemplified by a deep autoencoder (AE) for automated feature representation. Results: Our findings highlight the challenge of differentiating synthetic data from real data for both experts and ML classifiers, underscoring the quality of synthetic data. This observation was also confirmed by SPM. By integrating synthetic data into AE training, the reconstruction error can be reduced compared to using only real data samples. Moreover, this study demonstrates the potential for reduced latent dimensions, while maintaining a reconstruction accuracy comparable to AEs trained exclusively on real data samples. Conclusion: This study emphasizes the prospects of harnessing generative AI to enhance ML tasks in the biomechanics domain.

9.
PLoS One ; 18(12): e0290498, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38096309

RESUMEN

In epidemiologic studies, association estimates of an exposure with disease outcomes are often biased when the uncertainties of exposure are ignored. Consequently, corresponding confidence intervals (CIs) will not have correct coverage. This issue is particularly problematic when exposures must be reconstructed from physical measurements, for example, for environmental or occupational radiation doses that were received by a study population for which radiation doses cannot be measured directly. To incorporate complex uncertainties in reconstructed exposures, the two-dimensional Monte Carlo (2DMC) dose estimation method has been proposed and used in various dose reconstruction efforts. The 2DMC method generates multiple exposure realizations from dosimetry models that incorporate various sources of errors to reflect the uncertainty of the dose distribution as well as the uncertainties in individual doses in the exposed population. Traditional measurement-error model approaches, typically based on using mean doses in the dose-exposure analysis, do not fully account exposure uncertainties. A recently developed statistical approach that overcomes many of these limitations by analyzing multiple exposure realizations in relation to disease risk is Bayesian model averaging (BMA). The analytic advantage of the BMA is its ability to better accommodate complex exposure uncertainty in the risk estimation, but a practical. Drawback is its significant computational complexity. In this present paper, we propose a novel frequentist model averaging (FMA) approach which has all the analytical advantages of the BMA method but is much simpler to implement and computationally faster. We show in simulations that, like BMA, FMA yields 95% confidence intervals for association parameters that close to 95% coverage rate. In simulations, the FMA has shorter length of CIs than those of another frequentist approach, the corrected information matrix (CIM) method. We illustrate the similarities in performance of BMA and FMA from a study of exposures from radioactive fallout in Kazakhstan.


Asunto(s)
Radiometría , Humanos , Incertidumbre , Teorema de Bayes , Radiometría/métodos , Estudios Epidemiológicos , Método de Montecarlo
10.
Nat Med ; 29(12): 3111-3119, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37946058

RESUMEN

Over one million European children undergo computed tomography (CT) scans annually. Although moderate- to high-dose ionizing radiation exposure is an established risk factor for hematological malignancies, risks at CT examination dose levels remain uncertain. Here we followed up a multinational cohort (EPI-CT) of 948,174 individuals who underwent CT examinations before age 22 years in nine European countries. Radiation doses to the active bone marrow were estimated on the basis of body part scanned, patient characteristics, time period and inferred CT technical parameters. We found an association between cumulative dose and risk of all hematological malignancies, with an excess relative risk of 1.96 (95% confidence interval 1.10 to 3.12) per 100 mGy (790 cases). Similar estimates were obtained for lymphoid and myeloid malignancies. Results suggest that for every 10,000 children examined today (mean dose 8 mGy), 1-2 persons are expected to develop a hematological malignancy attributable to radiation exposure in the subsequent 12 years. Our results strengthen the body of evidence of increased cancer risk at low radiation doses and highlight the need for continued justification of pediatric CT examinations and optimization of doses.


Asunto(s)
Neoplasias Hematológicas , Neoplasias Inducidas por Radiación , Exposición a la Radiación , Humanos , Niño , Adolescente , Adulto Joven , Adulto , Dosis de Radiación , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología , Neoplasias Inducidas por Radiación/patología , Neoplasias Hematológicas/epidemiología , Neoplasias Hematológicas/etiología , Exposición a la Radiación/efectos adversos , Tomografía Computarizada por Rayos X/efectos adversos
11.
J Gen Intern Med ; 38(Suppl 4): 965-973, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37798575

RESUMEN

BACKGROUND: The U.S. Department of Veterans Affairs (VA) is undergoing an enterprise-wide transition from a homegrown electronic health record (EHR) system to a commercial off-the-shelf product. Because of the far-reaching effects of the EHR transformation through all aspects of the healthcare system, VA Health Services Research and Development identified a need to develop a research agenda that aligned with health system priorities so that work may inform evidence-based improvements in implementation processes and outcomes. OBJECTIVE: The purpose of this paper is to report on the development of a research agenda designed to optimize the EHR transition processes and implementation outcomes in a large, national integrated delivery system. DESIGN: We used a sequential mixed-methods approach (portfolio assessment, literature review) combined with multi-level stakeholder engagement approach that included research, informatics, and healthcare operations experts in EHR transitions in and outside the VA. Data from each stage were integrated iteratively to identify and prioritize key research areas within and across all stakeholder groups. PARTICIPANTS: VA informatics researchers, regional VA health system leaders, national VA program office leaders, and external informatics experts with EHR transition experience. KEY RESULTS: Through three rounds of stakeholder engagement, priority research topics were identified that focused on operations, user experience, patient safety, clinical outcomes, value realization, and informatics innovations. CONCLUSIONS: The resulting EHR-focused research agenda was designed to guide development and conduct of rigorous research evidence aimed at providing actionable results to address the needs of operations partners, clinicians, clinical staff, patients, and other stakeholders. Continued investment in research and evaluation from both research and operations divisions of VA will be critical to executing the research agenda, ensuring its salience and value to the health system and its end users, and ultimately realizing the promise of this EHR transition.


Asunto(s)
Registros Electrónicos de Salud , Veteranos , Estados Unidos , Humanos , United States Department of Veterans Affairs , Atención a la Salud , Investigación sobre Servicios de Salud , Prioridades en Salud
13.
Bioengineering (Basel) ; 10(5)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37237581

RESUMEN

Postural deficits such as hyperlordosis (hollow back) or hyperkyphosis (hunchback) are relevant health issues. Diagnoses depend on the experience of the examiner and are, therefore, often subjective and prone to errors. Machine learning (ML) methods in combination with explainable artificial intelligence (XAI) tools have proven useful for providing an objective, data-based orientation. However, only a few works have considered posture parameters, leaving the potential for more human-friendly XAI interpretations still untouched. Therefore, the present work proposes an objective, data-driven ML system for medical decision support that enables especially human-friendly interpretations using counterfactual explanations (CFs). The posture data for 1151 subjects were recorded by means of stereophotogrammetry. An expert-based classification of the subjects regarding the presence of hyperlordosis or hyperkyphosis was initially performed. Using a Gaussian progress classifier, the models were trained and interpreted using CFs. The label errors were flagged and re-evaluated using confident learning. Very good classification performances for both hyperlordosis and hyperkyphosis were found, whereby the re-evaluation and correction of the test labels led to a significant improvement (MPRAUC = 0.97). A statistical evaluation showed that the CFs seemed to be plausible, in general. In the context of personalized medicine, the present study's approach could be of importance for reducing diagnostic errors and thereby improving the individual adaptation of therapeutic measures. Likewise, it could be a basis for the development of apps for preventive posture assessment.

14.
J Funct Morphol Kinesiol ; 8(2)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37218862

RESUMEN

This pilot study aimed to investigate the use of sensorimotor insoles in pain reduction, different orthopedic indications, and the wearing duration effects on the development of pain. Three hundred and forty patients were asked about their pain perception using a visual analog scale (VAS) in a pre-post analysis. Three main intervention durations were defined: VAS_post: up to 3 months, 3 to 6 months, and more than 6 months. The results show significant differences for the within-subject factor "time of measurement", as well as for the between-subject factor indication (p < 0.001) and worn duration (p < 0.001). No interaction was found between indication and time of measurements (model A) or between worn duration and time of measurements (model B). The results of this pilot study must be cautiously and critically interpreted, but may support the hypothesis that sensorimotor insoles could be a helpful tool for subjective pain reduction. The missing control group and the lack of confounding variables such as methodological weaknesses, natural healing processes, and complementary therapies must be taken into account. Based on these experiences and findings, a RCT and systematic review will follow.

15.
Artículo en Inglés | MEDLINE | ID: mdl-36901144

RESUMEN

Poor posture is a well-known problem in all age groups and can lead to back pain, which in turn can result in high socio-economic costs. Regular assessment of posture can therefore help to identify postural deficits at an early stage in order to take preventive measures and can therefore be an important tool for promoting public health. We measured the posture of 1127 symptom-free subjects aged 10 to 69 years using stereophotogrammetry and determined the sagittal posture parameters flèche cervicale (FC), flèche lombaire (FL), and kyphosis index (KI) as well as the values standardized to the trunk height (FC%, FL%, KI%). FC, FC%, KI, and KI% showed an increase with age in men but not in women, and a difference between the sexes. FL remained largely constant with age, although FL% had significantly greater values in women than men. Postural parameters correlated only moderately or weakly with body mass index. Reference values were determined for different age groups and for both sexes. Since the parameters analyzed can also be determined by simple and non-instrumental methods in medical office, they are suitable for performing preventive checks in daily medical or therapeutic practice.


Asunto(s)
Cifosis , Masculino , Humanos , Femenino , Valores de Referencia , Dolor de Espalda , Índice de Masa Corporal , Postura , Columna Vertebral
16.
Lancet Oncol ; 24(1): 45-53, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493793

RESUMEN

BACKGROUND: The European EPI-CT study aims to quantify cancer risks from CT examinations of children and young adults. Here, we assess the risk of brain cancer. METHODS: We pooled data from nine European countries for this cohort study. Eligible participants had at least one CT examination before age 22 years documented between 1977 and 2014, had no previous diagnosis of cancer or benign brain tumour, and were alive and cancer-free at least 5 years after the first CT. Participants were identified through the Radiology Information System in 276 hospitals. Participants were linked with national or regional registries of cancer and vital status, and eligible cases were patients with brain cancers according to WHO International Classification of Diseases for Oncology. Gliomas were analysed separately to all brain cancers. Organ doses were reconstructed using historical machine settings and a large sample of CT images. Excess relative risks (ERRs) of brain cancer per 100 mGy of cumulative brain dose were calculated with linear dose-response modelling. The outcome was the first reported diagnosis of brain cancer after an exclusion period of 5 years after the first electronically recorded CT examination. FINDINGS: We identified 948 174 individuals, of whom 658 752 (69%) were eligible for our study. 368 721 (56%) of 658 752 participants were male and 290 031 (44%) were female. During a median follow-up of 5·6 years (IQR 2·4-10·1), 165 brain cancers occurred, including 121 (73%) gliomas. Mean cumulative brain dose, lagged by 5 years, was 47·4 mGy (SD 60·9) among all individuals and 76·0 mGy (100·1) among people with brain cancer. A significant linear dose-response relationship was observed for all brain cancers (ERR per 100 mGy 1·27 [95% CI 0·51-2·69]) and for gliomas separately (ERR per 100 mGy 1·11 [0·36-2·59]). Results were robust when the start of follow-up was delayed beyond 5 years and when participants with possibly previously unreported cancers were excluded. INTERPRETATION: The observed significant dose-response relationship between CT-related radiation exposure and brain cancer in this large, multicentre study with individual dose evaluation emphasises careful justification of paediatric CTs and use of doses as low as reasonably possible. FUNDING: EU FP7; Belgian Cancer Registry; La Ligue contre le Cancer, L'Institut National du Cancer, France; Ministry of Health, Labour and Welfare of Japan; German Federal Ministry of Education and Research; Worldwide Cancer Research; Dutch Cancer Society; Research Council of Norway; Consejo de Seguridad Nuclear, Generalitat de Catalunya, Spain; US National Cancer Institute; UK National Institute for Health Research; Public Health England.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Inducidas por Radiación , Exposición a la Radiación , Niño , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Estudios de Cohortes , Dosis de Radiación , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología , Neoplasias Inducidas por Radiación/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/etiología , Glioma/diagnóstico por imagen , Glioma/epidemiología , Glioma/etiología , Exposición a la Radiación/efectos adversos , Tomografía Computarizada por Rayos X/efectos adversos , Tomografía Computarizada por Rayos X/métodos
18.
J Med Internet Res ; 24(12): e42163, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36454608

RESUMEN

BACKGROUND: Drug-induced long-QT syndrome (diLQTS) is a major concern among patients who are hospitalized, for whom prediction models capable of identifying individualized risk could be useful to guide monitoring. We have previously demonstrated the feasibility of machine learning to predict the risk of diLQTS, in which deep learning models provided superior accuracy for risk prediction, although these models were limited by a lack of interpretability. OBJECTIVE: In this investigation, we sought to examine the potential trade-off between interpretability and predictive accuracy with the use of more complex models to identify patients at risk for diLQTS. We planned to compare a deep learning algorithm to predict diLQTS with a more interpretable algorithm based on cluster analysis that would allow medication- and subpopulation-specific evaluation of risk. METHODS: We examined the risk of diLQTS among 35,639 inpatients treated between 2003 and 2018 with at least 1 of 39 medications associated with risk of diLQTS and who had an electrocardiogram in the system performed within 24 hours of medication administration. Predictors included over 22,000 diagnoses and medications at the time of medication administration, with cases of diLQTS defined as a corrected QT interval over 500 milliseconds after treatment with a culprit medication. The interpretable model was developed using cluster analysis (K=4 clusters), and risk was assessed for specific medications and classes of medications. The deep learning model was created using all predictors within a 6-layer neural network, based on previously identified hyperparameters. RESULTS: Among the medications, we found that class III antiarrhythmic medications were associated with increased risk across all clusters, and that in patients who are noncritically ill without cardiovascular disease, propofol was associated with increased risk, whereas ondansetron was associated with decreased risk. Compared with deep learning, the interpretable approach was less accurate (area under the receiver operating characteristic curve: 0.65 vs 0.78), with comparable calibration. CONCLUSIONS: In summary, we found that an interpretable modeling approach was less accurate, but more clinically applicable, than deep learning for the prediction of diLQTS. Future investigations should consider this trade-off in the development of methods for clinical prediction.


Asunto(s)
Registros Electrónicos de Salud , Síndrome de QT Prolongado , Humanos , Aprendizaje Automático , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/diagnóstico , Electrocardiografía , Análisis por Conglomerados
19.
JMIR Cardio ; 6(2): e38040, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36322114

RESUMEN

BACKGROUND: Many machine learning approaches are limited to classification of outcomes rather than longitudinal prediction. One strategy to use machine learning in clinical risk prediction is to classify outcomes over a given time horizon. However, it is not well-known how to identify the optimal time horizon for risk prediction. OBJECTIVE: In this study, we aim to identify an optimal time horizon for classification of incident myocardial infarction (MI) using machine learning approaches looped over outcomes with increasing time horizons. Additionally, we sought to compare the performance of these models with the traditional Framingham Heart Study (FHS) coronary heart disease gender-specific Cox proportional hazards regression model. METHODS: We analyzed data from a single clinic visit of 5201 participants of a cardiovascular health study. We examined 61 variables collected from this baseline exam, including demographic and biologic data, medical history, medications, serum biomarkers, electrocardiographic, and echocardiographic data. We compared several machine learning methods (eg, random forest, L1 regression, gradient boosted decision tree, support vector machine, and k-nearest neighbor) trained to predict incident MI that occurred within time horizons ranging from 500-10,000 days of follow-up. Models were compared on a 20% held-out testing set using area under the receiver operating characteristic curve (AUROC). Variable importance was performed for random forest and L1 regression models across time points. We compared results with the FHS coronary heart disease gender-specific Cox proportional hazards regression functions. RESULTS: There were 4190 participants included in the analysis, with 2522 (60.2%) female participants and an average age of 72.6 years. Over 10,000 days of follow-up, there were 813 incident MI events. The machine learning models were most predictive over moderate follow-up time horizons (ie, 1500-2500 days). Overall, the L1 (Lasso) logistic regression demonstrated the strongest classification accuracy across all time horizons. This model was most predictive at 1500 days follow-up, with an AUROC of 0.71. The most influential variables differed by follow-up time and model, with gender being the most important feature for the L1 regression and weight for the random forest model across all time frames. Compared with the Framingham Cox function, the L1 and random forest models performed better across all time frames beyond 1500 days. CONCLUSIONS: In a population free of coronary heart disease, machine learning techniques can be used to predict incident MI at varying time horizons with reasonable accuracy, with the strongest prediction accuracy in moderate follow-up periods. Validation across additional populations is needed to confirm the validity of this approach in risk prediction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...