Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Blood Adv ; 8(21): 5467-5478, 2024 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-39208365

RESUMEN

ABSTRACT: Expression of the thrombomodulin (TM) variant c.1611C>A (p.Cys537Stop) leads to the synthesis of a protein with no cytoplasmic tail and a transmembrane domain shortened by 3 amino acids (TM536). However, little is known regarding the release mechanism and properties of TM536. Using umbilical vein endothelial cells and peripheral blood-derived endothelial colony-forming cells from a heterozygous carrier of the TM536 variant as well as overexpression cell models, we demonstrated that TM536 is released from cells by an unusual mechanism. First, TM536 is inserted into the endoplasmic reticulum (ER) membrane, then, because of the low hydrophobicity of its intramembrane domain, it escapes from it and follows the conventional secretory pathway to be released into the extracellular compartment without the involvement of proteolysis. This particular secretion mechanism yields a soluble TM536, which is poorly modified by chondroitin sulfate glycosaminoglycan compared with conventionally secreted soluble forms of TM, and therefore has a suboptimal capacity to mediate thrombin-dependent activation of protein C (PC). We also showed that TM536 cellular trafficking was altered, with retention in the early secretory pathway and increased sensitivity to ER-associated degradation. As expected, activation of ER-associated degradation increased TM536 degradation and reduced its release. The expression of TM536 at the cell surface was low, and its distribution in lipid raft-like membrane microdomains was altered, resulting in low thrombin-dependent PC activation on the cell surface.


Asunto(s)
Retículo Endoplásmico , Trombomodulina , Trombomodulina/metabolismo , Trombomodulina/genética , Humanos , Retículo Endoplásmico/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Transporte de Proteínas , Membrana Celular/metabolismo , Proteína C/metabolismo
2.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37298697

RESUMEN

Individuals born after intrauterine growth restriction (IUGR) are at risk of developing cardiovascular diseases (CVDs). Endothelial dysfunction plays a role in the pathogenesis of CVDs; and endothelial colony-forming cells (ECFCs) have been identified as key factors in endothelial repair. In a rat model of IUGR induced by a maternal low-protein diet, we observed an altered functionality of ECFCs in 6-month-old males, which was associated with arterial hypertension related to oxidative stress and stress-induced premature senescence (SIPS). Resveratrol (R), a polyphenol compound, was found to improve cardiovascular function. In this study, we investigated whether resveratrol could reverse ECFC dysfunctions in the IUGR group. ECFCs were isolated from IUGR and control (CTRL) males and were treated with R (1 µM) or dimethylsulfoxide (DMSO) for 48 h. In the IUGR-ECFCs, R increased proliferation (5'-bromo-2'-deoxyuridine (BrdU) incorporation, p < 0.001) and improved capillary-like outgrowth sprout formation (in Matrigel), nitric oxide (NO) production (fluorescent dye, p < 0.01), and endothelial nitric oxide synthase (eNOS) expression (immunofluorescence, p < 0.001). In addition, R decreased oxidative stress with reduced superoxide anion production (fluorescent dye, p < 0.001); increased Cu/Zn superoxide dismutase expression (Western blot, p < 0.05); and reversed SIPS with decreased beta-galactosidase activity (p < 0.001), and decreased p16ink4a (p < 0.05) and increased Sirtuin-1 (p < 0.05) expressions (Western blot). No effects of R were observed in the CTRL-ECFCs. These results suggest that R reverses long-term ECFC dysfunctions related to IUGR.


Asunto(s)
Enfermedades Cardiovasculares , Retardo del Crecimiento Fetal , Humanos , Masculino , Femenino , Ratas , Animales , Retardo del Crecimiento Fetal/metabolismo , Resveratrol/farmacología , Resveratrol/metabolismo , Colorantes Fluorescentes/metabolismo , Células Endoteliales/metabolismo , Enfermedades Cardiovasculares/metabolismo , Proliferación Celular , Células Cultivadas
3.
Angiogenesis ; 26(3): 463-475, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36973482

RESUMEN

APJ has been extensively described in the pathophysiology of angiogenesis and cell proliferation. The prognostic value of APJ overexpression in many diseases is now established. This study aimed to design a PET radiotracer that specifically binds to APJ. Apelin-F13A-NODAGA (AP747) was synthesized and radiolabeled with gallium-68 ([68Ga]Ga-AP747). Radiolabeling purity was excellent (> 95%) and stable up to 2 h. Affinity constant of [67Ga]Ga-AP747 was measured on APJ-overexpressing colon adenocarcinoma cells and was in nanomolar range. Specificity of [68Ga]Ga-AP747 for APJ was evaluated in vitro by autoradiography and in vivo by small animal PET/CT in both colon adenocarcinoma mouse model and Matrigel plug mouse model. Dynamic of [68Ga]Ga-AP747 PET/CT biodistributions was realized on healthy mice and pigs for two hours, and quantification of signal in organs showed a suitable pharmacokinetic profile for PET imaging, largely excreted by urinary route. Matrigel mice and hindlimb ischemic mice were submitted to a 21-day longitudinal follow-up with [68Ga]Ga-AP747 and [68Ga]Ga-RGD2 small animal PET/CT. [68Ga]Ga-AP747 PET signal in Matrigel was significantly more intense than that of [68Ga]Ga-RGD2. Revascularization of the ischemic hind limb was followed by LASER Doppler. In the hindlimb, [68Ga]Ga-AP747 PET signal was more than twice higher than that of [68Ga]Ga-RGD2 on day 7, and significantly superior over the 21-day follow-up. A significant, positive correlation was found between the [68Ga]Ga-AP747 PET signal on day 7 and late hindlimb perfusion on day 21. We developed a new PET radiotracer that specifically binds to APJ, [68Ga]Ga-AP747 that showed more efficient imaging properties than the most clinically advanced tracer of angiogenesis, [68Ga]Ga-RGD2.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Animales , Ratones , Porcinos , Apelina , Receptores de Apelina , Radioisótopos de Galio , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Imagen Molecular/métodos , Oligopéptidos
4.
Biomedicines ; 11(2)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36830886

RESUMEN

Adipose tissue is recognized as a valuable source of cells with angiogenic, immunomodulatory, reparative and antifibrotic properties and emerged as a therapeutic alternative for the regeneration and repair of damaged tissues. The use of adipose-tissue-based therapy is expanding in autoimmune diseases, particularly in Systemic Sclerosis (SSc), a disease in which hands and face are severely affected, leading to disability and a decrease in quality of life. Combining the advantage of an abundant supply of fat tissue and a high abundance of stem/stromal cells, fat grafting and adipose tissue-derived cell-based therapies are attractive therapeutic options in SSc. This review aims to synthesize the evidence to determine the effects of the use of these biological products for face and hands treatment in the context of SSc. This highlights several points: the need to use relevant effectiveness criteria taking into account the clinical heterogeneity of SSc in order to facilitate assessment and comparison of innovative therapies; second, it reveals some impacts of the disease on fat-grafting success; third, an important heterogeneity was noticed regarding the manufacturing of the adipose-derived products and lastly, it shows a lack of robust evidence from controlled trials comparing adipose-derived products with standard care.

5.
Acta Neuropathol Commun ; 10(1): 151, 2022 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-36274147

RESUMEN

RATIONALE: Glioblastoma multiforme (GBM) is a primary brain tumor with poor prognosis. The U.S. food and drug administration approved the use of the anti-VEGF antibody bevacizumab in recurrent GBM. However, resistance to this treatment is frequent and fails to enhance the overall survival of patients. In this study, we aimed to identify novel mechanism(s) responsible for bevacizumab-resistance in CD146-positive glioblastoma. METHODS: The study was performed using sera from GBM patients and human GBM cell lines in culture or xenografted in nude mice. RESULTS: We found that an increase in sCD146 concentration in sera of GBM patients after the first cycle of bevacizumab treatment was significantly associated with poor progression free survival and shorter overall survival. Accordingly, in vitro treatment of CD146-positive glioblastoma cells with bevacizumab led to a high sCD146 secretion, inducing cell invasion. These effects were mediated through integrin αvß3 and were blocked by mucizumab, a novel humanized anti-sCD146 antibody. In vivo, the combination of bevacizumab with mucizumab impeded CD146 + glioblastoma growth and reduced tumor cell dissemination to an extent significantly higher than that observed with bevacizumab alone. CONCLUSION: We propose sCD146 to be 1/ an early biomarker to predict and 2/ a potential target to prevent bevacizumab resistance in patients with glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Ratones , Animales , Humanos , Glioblastoma/patología , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Antígeno CD146/metabolismo , Ratones Desnudos , Integrina alfaVbeta3/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Biomarcadores , Neoplasias Encefálicas/patología
6.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012229

RESUMEN

Endothelial dysfunction is a key factor in atherosclerosis. However, the link between endothelial repair and severity of atherosclerotic cardiovascular disease (ASCVD) is unclear. This study investigates the relationship between ASCVD, markers of inflammation, and circulating endothelial progenitor cells, namely hematopoietic cells with paracrine angiogenic activity and endothelial colony forming cells (ECFC). Two hundred and forty-three subjects from the TELARTA study were classified according to the presence of clinical atherosclerotic disease. ASCVD severity was assessed by the number of involved vascular territories. Flow cytometry was used to numerate circulating progenitor cells (PC) expressing CD34 and those co-expressing CD45, CD34, and KDR. Peripheral blood mononuclear cells ex vivo culture methods were used to determine ECFC and Colony Forming Unit- endothelial cells (CFU-EC). The ECFC subpopulation was analyzed for proliferation, senescence, and vasculogenic properties. Plasma levels of IL-6 and VEGF-A were measured using Cytokine Array. Despite an increased number of circulating precursors in ASCVD patients, ASCVD impaired the colony forming capacity and the angiogenic properties of ECFC in a severity-dependent manner. Alteration of ECFC was associated with increased senescent phenotype and IL-6 levels. Our study demonstrates a decrease in ECFC repair capacity according to ASCVD severity in an inflammatory and senescence-associated secretory phenotype context.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Células Progenitoras Endoteliales , Células Cultivadas , Humanos , Interleucina-6 , Leucocitos Mononucleares , Neovascularización Fisiológica
7.
J Voice ; 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35710603

RESUMEN

OBJECTIVES/HYPOTHESIS: Vocal folds (VF) scarring leads to severe dysphonia which negatively impacts daily life of patients. Current therapeutic options are limited due in large part to the high complexity of the micro-structure of the VF. Innovative therapies derived from adipose tissue such as stromal vascular fraction (SVF) or adipose derived stromal/ stem cells (ASC) are currently being evaluated in this indication and paracrine anti-fibrotic effects are considered as predominant mechanisms. METHODS: The paracrine anti-fibrotic effects of SVF and ASC from healthy donors were tested in an innovative in vitro fibrogenesis model employing human VF fiboblasts (hVFF) and the principles of macromolecular crowding (MMC). Biosynthesis of collogen and alpha-smooth-muscle actin (αSMA) expression in hVFF were quantified after five days of indirect coculture with ASC or SVF using silver stain, western blot and RT-qPCR analysis. RESULTS: Fibrogenesis was promoted by addition of transforming growth factor beta 1 (TGFß1) combined with MMC characterized by an enhanced deposition of fibrillar collagens and the acquisition of a myofibroblast phenotype (overexpression of αSMA). Adipose-derived therapies led to a reduction in the αSMA expression and the collagen content was lower in hVFF co-cultivated with SVF. CONCLUSIONS: ASC and SVF promoted significant prevention of fibrosis in an in vitro fibrogenesis model through paracrine mechanisms, supporting further development of adipose-derived cellular therapies in VF scarring.

8.
Pharmaceutics ; 14(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35057018

RESUMEN

Microvesicles, so-called endothelial large extracellular vesicles (LEVs), are of great interest as biological markers and cell-free biotherapies in cardiovascular and oncologic diseases. However, their therapeutic perspectives remain limited due to the lack of reliable data regarding their systemic biodistribution after intravenous administration. METHODS: Applied to a mouse model of peripheral ischemia, radiolabeled endothelial LEVs were tracked and their in vivo whole-body distribution was quantified by microSPECT/CT imaging. Hindlimb perfusion was followed by LASER Doppler and motility impairment function was evaluated up to day 28 post-ischemia. RESULTS: Early and specific homing of LEVs to ischemic hind limbs was quantified on the day of ischemia and positively correlated with reperfusion intensity at a later stage on day 28 after ischemia, associated with an improved motility function. CONCLUSIONS: This concept is a major asset for investigating the biodistribution of LEVs issued from other cell types, including cancer, thus partly contributing to better knowledge and understanding of their fate after injection.

9.
Arthritis Rheumatol ; 74(6): 1027-1038, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35001552

RESUMEN

OBJECTIVE: Systemic sclerosis (SSc) is an autoimmune disorder characterized by excessive fibrosis, immune dysfunction, and vascular damage, in which the expression of many growth factors is deregulated. CD146 was recently described as a major actor in SSc. Since CD146 also exists as a circulating soluble form (sCD146) that acts as a growth factor in numerous angiogenic- and inflammation-related pathologies, we sought to identify the mechanisms underlying the generation of sCD146 and to characterize the regulation and functions of the different variants identified in SSc. METHODS: We performed in vitro experiments, including RNA-Seq and antibody arrays, and in vivo experiments using animal models of bleomycin-induced SSc and hind limb ischemia. RESULTS: Multiple forms of sCD146, generated by both shedding and alternative splicing of the primary transcript, were discovered. The shed form of sCD146 was generated from the cleavage of both long and short membrane isoforms of CD146 through ADAM-10 and TACE metalloproteinases, respectively. In addition, 2 novel sCD146 splice variants, I5-13-sCD146 and I10-sCD146, were identified. Of interest, I5-13-sCD146 was significantly increased in the sera of SSc patients (P < 0.001; n = 117), in particular in patients with pulmonary fibrosis (P < 0.01; n = 112), whereas I10-sCD146 was decreased (P < 0.05; n = 117). Further experiments revealed that shed sCD146 and I10-sCD146 displayed proangiogenic activity through the focal adhesion kinase and protein kinase Cε signaling pathways, respectively, whereas I5-13-sCD146 displayed profibrotic effects through the Wnt-1/ß-catenin/WISP-1 pathway. CONCLUSION: Variants of sCD146, and in particular the novel I5-13-sCD146 splice variant, could constitute novel biomarkers and/or molecular targets for the diagnosis and treatment of SSc and other angiogenesis- or fibrosis-related disorders.


Asunto(s)
Antígeno CD146 , Esclerodermia Sistémica , Animales , Biomarcadores , Antígeno CD146/genética , Antígeno CD146/metabolismo , Fibrosis , Humanos , Péptidos y Proteínas de Señalización Intercelular , Isquemia , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/metabolismo
10.
Bone Marrow Transplant ; 57(1): 17-22, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34663928

RESUMEN

Systemic sclerosis (SSc) is a complex autoimmune disease characterized by a functional and structural alteration of the microvascular network associated with cutaneous and visceral fibrosis lesions. Conventional therapies are based on the use of immunomodulatory molecules and symptomatic management but often prove to be insufficient, particularly for patients suffering from severe and rapidly progressive forms of the disease. In this context, cellular therapy approaches could represent a credible solution with the goal to act on the different components of the disease: the immune system, the vascular system and the extracellular matrix. The purpose of this review is to provide an overview of the cellular therapies available for the management of SSc. The first part will focus on systemically injected therapies, whose primary effect is based on immunomodulatory properties and immune system resetting, including autologous hematopoietic stem cell transplantation and intravenous injection of mesenchymal stem cells. The second part will discuss locally administered regenerative cell therapies, mainly derived from adipose tissue, developed for the management of local complications as hand and face disabilities.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Esclerodermia Sistémica , Tejido Adiposo , Humanos , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/terapia , Trasplante Autólogo
11.
Int J Mol Sci ; 22(18)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34576323

RESUMEN

Infants born after intrauterine growth restriction (IUGR) are at risk of developing arterial hypertension at adulthood. The endothelium plays a major role in the pathogenesis of hypertension. Endothelial colony-forming cells (ECFCs), critical circulating components of the endothelium, are involved in vasculo-and angiogenesis and in endothelium repair. We previously described impaired functionality of ECFCs in cord blood of low-birth-weight newborns. However, whether early ECFC alterations persist thereafter and could be associated with hypertension in individuals born after IUGR remains unknown. A rat model of IUGR was induced by a maternal low-protein diet during gestation versus a control (CTRL) diet. In six-month-old offspring, only IUGR males have increased systolic blood pressure (tail-cuff plethysmography) and microvascular rarefaction (immunofluorescence). ECFCs isolated from bone marrow of IUGR versus CTRL males displayed a decreased proportion of CD31+ versus CD146+ staining on CD45- cells, CD34 expression (flow cytometry, immunofluorescence), reduced proliferation (BrdU incorporation), and an impaired capacity to form capillary-like structures (Matrigel test), associated with an impaired angiogenic profile (immunofluorescence). These dysfunctions were associated with oxidative stress (increased superoxide anion levels (fluorescent dye), decreased superoxide dismutase protein expression, increased DNA damage (immunofluorescence), and stress-induced premature senescence (SIPS; increased beta-galactosidase activity, increased p16INK4a, and decreased sirtuin-1 protein expression). This study demonstrated an impaired functionality of ECFCs at adulthood associated with arterial hypertension in individuals born after IUGR.


Asunto(s)
Retardo del Crecimiento Fetal/fisiopatología , Animales , Presión Sanguínea/fisiología , Proliferación Celular/fisiología , Senescencia Celular/fisiología , Femenino , Masculino , Neovascularización Patológica/fisiopatología , Estrés Oxidativo/fisiología , Ratas
12.
Cells ; 9(10)2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987708

RESUMEN

The therapeutic use of adipose-derived stromal vascular fraction (SVF) is expanding in multiple pathologies. Various processes have been proposed for manufacturing SVF but they must be revisited based on advanced therapy medicinal product (ATMP) regulations. We report here the development and validation of a fully good manufacturing practices (GMP)-compliant protocol for the isolation of SVF. Adipose tissue was collected from healthy volunteers undergoing lipoaspiration. The optimal conditions of collagenase digestion and washing were determined based on measurements of SVF cell viability, yield recovery, and cell subset distribution. Comparability of the SVF obtained using the newly developed manufacturing process (n = 6) and the Celution-based automated method (n = 33), used as a reference, was established using inter-donor analyses. Characteristics of SVF (n = 5) generated using both manufacturing protocols were analyzed for an intra-donor comparison. In addition, these comparisons also included the determination of colony-forming unit fibroblast frequency, in vitro angiogenic activity, and in vivo regenerative effects in a mouse ischemic cutaneous wound model. We successfully developed a process for the generation of SVF presenting higher cell viability and yield recovery compared to the Celution device-based protocol. Characteristics of the SVF including phenotype, capacity for angiogenesis, and wound-healing promotion attested to the comparability of the two manufacturing processes. We validated an optimized non-automated process that should allow for a GMP-compliant, more affordable, and reduced-cost strategy to exploit the potential of SVF-based regenerative therapies.


Asunto(s)
Tejido Adiposo/irrigación sanguínea , Tejido Adiposo/citología , Técnicas de Cultivo de Célula/economía , Técnicas de Cultivo de Célula/métodos , Análisis Costo-Beneficio , Animales , Automatización , Colagenasas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Isquemia/patología , Cinética , Ratones Desnudos , Neovascularización Fisiológica , Células del Estroma/citología , Especificidad por Sustrato
13.
Front Immunol ; 11: 445, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256495

RESUMEN

Background: Better understanding of the contribution of donor aging and comorbidity factors of expanded criteria donors (ECD) to the clinical outcome of a transplant is a challenge in kidney transplantation. We investigated whether the features of donor-derived stromal vascular fraction of perirenal adipose tissue (PRAT-SVF) could be indicative of the deleterious impact of the ECD microenvironment on a renal transplant. Methods: A comparative analysis of cellular components, transcriptomic and vasculogenic profiles was performed in PRAT-SVF obtained from 22 optimal donors and 31 ECD deceased donors. We then investigated whether these parameters could be associated with donor aging and early allograft dysfunction. Results: When compared with the PRAT-SVF of non-ECD donors, ECD PRAT-SVF displayed a lower proportion of stromal cells, a higher proportion of inflammatory NK cells. The global RNA sequencing approach indicated a differential molecular signature in the PRAT-SVF of ECD donors characterized by the over-expression of CXCL1 and IL1-ß inflammatory transcripts. The vasculogenic activity of PRAT-SVF was highly variable but was not significantly affected in marginal donors. Periorgan recruitment of monocytes/macrophages and NK cells in PRAT-SVF was associated with donor aging. The presence of NK cell infiltrates was associated with lower PRAT-SVF angiogenic activity and with early allograft dysfunction evaluated on day 7 and at 1 month post-transplant. Conclusions: Our results indicate that human NK cell subsets are differentially recruited in the periorgan environment of aging kidney transplants. We provide novel evidence that PRAT-SVF represents a non-invasive and timely source of donor material with potential value to assess inflammatory features that impact organ quality and function.


Asunto(s)
Tejido Adiposo/fisiología , Inflamación/inmunología , Trasplante de Riñón , Riñón/inmunología , Células Asesinas Naturales/inmunología , Macrófagos/inmunología , Disfunción Primaria del Injerto/inmunología , Adulto , Anciano , Envejecimiento , Movimiento Celular , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Femenino , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Persona de Mediana Edad , Neovascularización Patológica , Estudios Prospectivos , Donantes de Tejidos , Transcriptoma , Trasplantes
16.
J Clin Med ; 8(11)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739569

RESUMEN

Innovative therapies based on autologous adipose-derived stem/stromal cells (ASC) are currently being evaluated for treatment of systemic sclerosis (SSc). Although paracrine angiogenic and antifibrotic effects are considered the predominant mechanisms of ASC therapeutic potential, the impact of SSc on ASC paracrine functions remains controversial. In this study, phenotype, senescence, differentiation potential, and molecular profile were determined in ASC from SSc patients (SSc-ASC) (n = 7) and healthy donors (HD-ASC) (n = 7). ASC were co-cultured in indirect models with dermal fibroblasts (DF) from SSc patients or endothelial cells to assess their pro-angiogenic and antifibrotic paracrine effects. The angiogenic activity of endothelial cells was measured in vitro using tube formation and spheroid assays. DF collagen and alpha smooth muscle actin (αSMA) content were quantified after five days of co-culture with ASC. Differentiation capacity, senescence, and mRNA profiles did not differ significantly between SSc-ASC and HD-ASC. SSc-ASC retained the ability to stimulate angiogenesis through paracrine mechanisms; however, functional assays revealed reduced potential compared to HD-ASC. DF fibrosis markers were significantly decreased after co-culture with SSc-ASC. Together, these results indicate that SSc effects do not significantly compromise the angiogenic and the antifibrotic paracrine properties of ASC, thereby supporting further development of ASC-based autologous therapies for SSc treatment.

17.
Semin Thromb Hemost ; 45(6): 593-603, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31430786

RESUMEN

Microvesicles (MVs) are small membrane enclosed structures released into the extracellular space by virtually all cell types. Their composition varies according to the cell origin and the stimulus which caused their formation. They harbor functional molecules and participate in intercellular communication. Endothelium, inflammatory cells, and cancer cells produce procoagulant MVs which contribute to cancer-associated thrombosis (CAT) in animal models. The tissue factor (TF) conveyed by these MVs was shown to play a key role in different animal models of experimental CAT. Alternatively, other molecular mechanisms involving polyphosphates or phosphatidylethanolamine could also be involved. In clinical practice, an association between an increase in the number of TF-positive or the procoagulant activity of these MVs and the occurrence of CAT has indeed been demonstrated in pancreatic-biliary cancers, suggesting that they could behave as a biomarker predictive for CAT. However, to date, this association was not confirmed in other types of cancer. Potential causes explaining this limited associated between MVs and CAT are (1) the diversity of mechanisms associating MVs and different types of cancer; (2) a more complex role of MVs in hemostasis integrating their anticoagulant and fibrinolytic activity; and (3) the lack of sensitivity, reproducibility, and standardization of current methodologies permitting measurement of MVs. Each of these hypotheses constitutes an interesting exploration path for a future reassessment of the clinical interest of the MVs in CAT.


Asunto(s)
Micropartículas Derivadas de Células/patología , Neoplasias/complicaciones , Trombosis/etiología , Humanos , Neoplasias/patología , Trombosis/patología
18.
Sci Rep ; 9(1): 10299, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311940

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) infection promotes a generalized activation of host responses that involves not only CD4 T cells, but also cells of the microenvironment, which are not directly infected, such as endothelial cells. The mechanisms triggering HIV-1-associated vascular alterations remain poorly understood. Extracellular vesicles (EVs), implicated in cell-to-cell communication, have been recently described as carriers of microRNAs (miRNAs). Here, we show that miR-146b-5p is upregulated in both CD4 T cells, CD4 T cell-derived EVs and circulating EVs obtained from antiretroviral therapy-naive HIV-1-infected patients. We further demonstrate that EVs from T cell line overexpressing miR-146b-5p mimics (miR-146b-EVs): 1) protect their miRNA cargo from RNase degradation, 2) transfer miR-146b-5p mimics into endothelial cells and 3) reduce endothelial inflammatory responses in vitro and in vivo in the lungs of mice through the downregulation of nuclear factor-κB-responsive molecules. These data advance our understanding on chronic inflammatory responses affecting endothelial homeostasis, in infectious and non-infectious diseases and pave the way for potential new anti-inflammatory strategies.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Células Endoteliales/citología , Vesículas Extracelulares/genética , Infecciones por VIH/genética , VIH-1/inmunología , MicroARNs/genética , Adulto , Animales , Linfocitos T CD4-Positivos/virología , Estudios de Casos y Controles , Línea Celular , Células Endoteliales/química , Femenino , Infecciones por VIH/inmunología , VIH-1/patogenicidad , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Regulación hacia Arriba
19.
Ann Rheum Dis ; 78(3): 391-398, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30612118

RESUMEN

OBJECTIVE: The autologous stromal vascular fraction (SVF) from adipose tissue is an alternative to cultured adipose-derived stem cells for use in regenerative medicine and represents a promising therapy for vasculopathy and hand disability in systemic sclerosis (SSc). However, the bioactivity of autologous SVF is not documented in this disease context. This study aimed to compare the molecular and functional profiles of the SVF-based medicinal product obtained from SSc and healthy subjects. METHODS: Good manufacturing practice (GMP)-grade SVF from 24 patients with SSc and 12 healthy donors (HD) was analysed by flow cytometry to compare the distribution of the CD45- and CD45+ haematopoietic cell subsets. The ability of SVF to form a vascular network was assessed using Matrigel in vivo assay. The transcriptomic and secretory profiles of the SSc-SVF were assessed by RNA sequencing and multiplex analysis, respectively, and were compared with the HD-SVF. RESULTS: The distribution of the leucocyte, endothelial, stromal, pericyte and transitional cell subsets was similar for SSc-SVF and HD-SVF. SSc-SVF retained its vasculogenic capacity, but the density of neovessels formed in SVF-loaded Matrigel implanted in nude mice was slightly decreased compared with HD-SVF. SSc-SVF displayed a differential molecular signature reflecting deregulation of angiogenesis, endothelial activation and fibrosis. CONCLUSIONS: Our study provides the first evidence that SSc does not compromise the vascular repair capacity of SVF, supporting its use as an innovative autologous biotherapy. The characterisation of the specific SSc-SVF molecular profile provides new perspectives for delineating markers of the potency of SVF and its targets for the treatment of SSc.


Asunto(s)
Tejido Adiposo/citología , Neovascularización Fisiológica/fisiología , Esclerodermia Sistémica/fisiopatología , Células del Estroma/fisiología , Tejido Adiposo/irrigación sanguínea , Femenino , Humanos , Masculino , Trasplante de Células Madre Mesenquimatosas , Persona de Mediana Edad , Esclerodermia Sistémica/terapia
20.
Sci Rep ; 8(1): 9387, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925894

RESUMEN

Cell-based therapies constitute a real hope for the treatment of ischaemic diseases. One of the sources of endothelial progenitors for autologous cell therapy is Endothelial Colony Forming Cells (ECFC) that can be isolated from peripheral blood. However, their use is limited by their low number in the bloodstream and the loss of their stem cell phenotype associated with the acquisition of a senescent phenotype in culture. We hypothesized that adding soluble CD146, a novel endothelial growth factor with angiogenic properties, during the isolation and growth procedures could improve their number and therapeutic potential. Soluble CD146 increased the number of isolated peripheral blood ECFC colonies and lowered their onset time. It prevented cellular senescence, induced a partial mesenchymal phenotype and maintained a stem cell phenotype by stimulating the expression of embryonic transcription factors. These different effects were mediated through the induction of mature miR-21. When injected in an animal model of hindlimb ischaemia, sCD146-primed ECFC isolated from 40 ml of blood from patients with peripheral arterial disease were able to generate new blood vessels and restore blood flow. Treatment with sCD146 could thus constitute a promising strategy to improve the use of autologous cells for the treatment of ischaemic diseases.


Asunto(s)
Antígeno CD146/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Endoteliales/citología , MicroARNs/metabolismo , Células Madre/metabolismo , Adolescente , Adulto , Animales , Western Blotting , Proliferación Celular/fisiología , Citometría de Flujo , Miembro Posterior/patología , Humanos , Isquemia/terapia , Masculino , Ratones , Ratones Desnudos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/citología , Células Madre/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...