Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 205: 116584, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878421

RESUMEN

Decreasing ocean surface pH, called ocean acidification (OA), is among the major risks for marine ecosystems due to human-driven atmospheric pCO2 increase. Understanding the molecular mechanisms of adaptation enabling marine species to tolerate a lowered seawater pH could support predictions of consequences of future OA scenarios for marine life. This study examined whether the ATP-binding cassette (ABC)-like gene slr2019 confers tolerance to the marine cyanobacterium Halomicronema metazoicum to low seawater pH conditions (7.7, 7.2, 6.5) in short- and long-term exposures (7 and 30 d). Photosynthetic pigment content indicated that the species can tolerate all three lowered-pH conditions. At day 7, slr2019 was up-regulated at pH 7.7 while no changes were observed at lower pH. After 30-d exposure, a significant decrease in slr2019 transcript levels was observed in all low-pH treatments. These first results indicate an effect of low pH on the examined transporter expression in H. metazoicum.


Asunto(s)
Cianobacterias , Agua de Mar , Agua de Mar/química , Concentración de Iones de Hidrógeno , Cianobacterias/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Dióxido de Carbono , Acidificación de los Océanos
2.
Sci Total Environ ; 922: 171249, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38431169

RESUMEN

How Antarctic species are facing historical and new stressors remains under-surveyed and risks to wildlife are still largely unknown. Adélie penguins Pygoscelis adeliae are well-known bioindicators and sentinels of Antarctic ecosystem changes, a true canary in the coal mine. Immuno-haematological parameters have been proved to detect stress in wild animals, given their rapid physiological response that allows them tracking environmental changes and thus inferring habitat quality. Here, we investigated variation in Erythrocyte Nuclear Abnormalities (ENAs) and White Blood Cells (WBCs) in penguins from three clustered colonies in the Ross Sea, evaluating immuno-haematological parameters according to geography, breeding stage, and individual penguin characteristics such as sex, body condition and nest quality. Concentrations of mercury (Hg) and stable isotopes of carbon and nitrogen (as proxies of the penguin's trophic ecology) were analysed in feathers to investigate the association between stress biomarkers and Hg contamination in Adélie penguins. Colony and breeding stage were not supported as predictors of immuno-haematological parameters. ENAs and WBCs were respectively ∼30 % and ∼20 % higher in male than in female penguins. Body condition influenced WBCs, with penguins in the best condition having a ∼22 % higher level of WBCs than those in the worst condition. Nest position affected the proportion of micronuclei (MNs), with inner-nesting penguins having more than three times the proportion of MNs than penguins nesting in peripheral positions. Heterophils:Lymphocytes (H:L) ratio was not affected by any of the above predictors. Multiple factors acting as stressors are expected to increase prominently in Antarctic wildlife in the near future, therefore extensive monitoring aimed to assess the health status of penguin populations is mandatory.


Asunto(s)
Mercurio , Spheniscidae , Animales , Masculino , Femenino , Ecosistema , Regiones Antárticas , Ecología , Animales Salvajes , Spheniscidae/fisiología
3.
Mar Pollut Bull ; 185(Pt B): 114365, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36435021

RESUMEN

Since the industrial revolution, fossil fuel combustion has led to a 30 %-increase of the atmospheric CO2 concentration, also increasing the ocean partial CO2 pressure. The consequent lowered surface seawater pH is termed ocean acidification (OA) and severely affects marine life on a global scale. Cellular and molecular responses of marine species to lowered seawater pH have been studied but information on the mechanisms driving the tolerance of adapted species to comparatively low seawater pH is limited. Such information may be obtained from species inhabiting sites with naturally low water pH that have evolved remarkable abilities to tolerate such conditions. This review gathers information on current knowledge about species naturally facing low water pH conditions and on cellular and molecular adaptive mechanisms enabling the species to survive under, and even benefit from, adverse pH conditions. Evidences derived from case studies on naturally acidified systems and on resistance mechanisms will guide predictions on the consequences of future adverse OA scenarios for marine biodiversity.


Asunto(s)
Dióxido de Carbono , Agua de Mar , Concentración de Iones de Hidrógeno , Agua , Océanos y Mares
4.
Sensors (Basel) ; 22(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36298261

RESUMEN

Geomatics is important for agriculture 4.0; in fact, it uses different types of data (remote sensing from satellites, Unmanned Aerial Vehicles-UAVs, GNSS, photogrammetry, laser scanners and other types of data) and therefore it uses data fusion techniques depending on the different applications to be carried out. This work aims to present on a study area concerning the integration of data acquired (using data fusion techniques) from remote sensing techniques, UAVs, autonomous driving machines and data fusion, all reprocessed and visualised in terms of results obtained through GIS (Geographic Information System). In this work we emphasize the importance of the integration of different methodologies and data fusion techniques, managing data of a different nature acquired with different methodologies to optimise vineyard cultivation and production. In particular, in this note we applied (focusing on a vineyard) geomatics-type methodologies developed in other works and integrated here to be used and optimised in order to make a contribution to agriculture 4.0. More specifically, we used the NDVI (Normalized Difference Vegetation Index) applied to multispectral satellite images and drone images (suitably combined) to identify the vigour of the plants. We then used an autonomous guided vehicle (equipped with sensors and monitoring systems) which, by estimating the optimal path, allows us to optimise fertilisation, irrigation, etc., by data fusion techniques using various types of sensors. Everything is visualised on a GIS to improve the management of the field according to its potential, also using historical data on the environmental, climatic and socioeconomic characteristics of the area. For this purpose, experiments of different types of Geomatics carried out individually on other application cases have been integrated into this work and are coordinated and integrated here in order to provide research/application cues for Agriculture 4.0.


Asunto(s)
Agricultura , Tecnología de Sensores Remotos , Tecnología de Sensores Remotos/métodos , Agricultura/métodos , Sistemas de Información Geográfica , Granjas , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...