Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8252, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086788

RESUMEN

Telomeres are nucleoprotein structures at the ends of linear chromosomes. In humans, they consist of TTAGGG repeats, which are bound by dedicated proteins such as the shelterin complex. This complex blocks unwanted DNA damage repair at telomeres, e.g. by suppressing nonhomologous end joining (NHEJ) through its subunit TRF2. Here, we describe ZNF524, a zinc finger protein that directly binds telomeric repeats with nanomolar affinity, and reveal base-specific sequence recognition by cocrystallization with telomeric DNA. ZNF524 localizes to telomeres and specifically maintains the presence of the TRF2/RAP1 subcomplex at telomeres without affecting other shelterin members. Loss of ZNF524 concomitantly results in an increase in DNA damage signaling and recombination events. Overall, ZNF524 is a direct telomere-binding protein involved in the maintenance of telomere integrity.


Asunto(s)
Telómero , Proteína 2 de Unión a Repeticiones Teloméricas , Humanos , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Telómero/genética , Telómero/metabolismo , Complejo Shelterina , Proteínas de Unión a Telómeros/metabolismo , ADN/genética , ADN/metabolismo
2.
Nutr Cancer ; 74(9): 3375-3387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35579498

RESUMEN

Mitogen­activated protein kinase (MAPK) pathway is a prominent signaling cascade that modulates cell proliferation, apoptosis, stress response, drug resistance, immune response, and cell motility. Activation of MAPK by various small molecules/natural compounds has been demonstrated to induce apoptosis in cancer cells. Herein, the effect of leelamine (LEE, a triterpene derived from bark of pine trees) on the activation of MAPK in hepatocellular carcinoma (HCC) and breast cancer (BC) cells was investigated. LEE induced potent cytotoxicity of HCC (HepG2 and HCCLM3) and BC (MDA-MB-231 and MCF7) cells over normal counterparts (MCF10A). LEE significantly enhanced the phosphorylation of p38 and JNK MAPKs in a dose-dependent fashion and it did not affect the phosphorylation of ERK in HCC and BC cells. The apoptosis-driving effect of LEE was further demonstrated by cleavage of procaspase-3/Bid and suppression of prosurvival proteins (Bcl-xL and XIAP). Furthermore, LEE also reduced the SDF1-induced-migration and -invasion of HCC and BC cells. Taken together, the data demonstrated that LEE promotes apoptosis and induces an anti-motility effect by activating p38 and JNK MAPKs in HCC and BC cells.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Abietanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Explor Target Antitumor Ther ; 1(4): 200-217, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-36046775

RESUMEN

Cancer remains the second leading cause of mortality globally. In combating cancer, conventional chemotherapy and/or radiotherapy are administered as first-line therapy. However, these are usually accompanied with adverse side effects that decrease the quality of patient's lives. As such, natural bioactive compounds have gained an attraction in the scientific and medical community as evidence of their anticancer properties and attenuation of side effects mounted. In particular, quassinoids have been found to exhibit a plethora of inhibitory activities such as anti-proliferative effects on tumor development and metastasis. Recently, bruceine D, a quassinoid isolated from the shrub Brucea javanica (L.) Merr. (Simaroubaceae), has come under immense investigation on its antineoplastic properties in various human cancers including pancreas, breast, lung, blood, bone, and liver. In this review, we have highlighted the antineoplastic effects of bruceine D and its mode of actions in different tumor models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...