Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Viruses ; 14(11)2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36366514

RESUMEN

The repurposing of licenced drugs for use against COVID-19 is one of the most rapid ways to develop new and alternative therapeutic options to manage the ongoing pandemic. Given circa 7817 licenced compounds available from Compounds Australia that can be screened, this paper demonstrates the utility of commercially available ex vivo/3D airway and alveolar tissue models. These models are a closer representation of in vivo studies than in vitro models, but retain the benefits of rapid in vitro screening for drug efficacy. We demonstrate that several existing drugs appear to show anti-SARS-CoV-2 activity against both SARS-CoV-2 Delta and Omicron Variants of Concern in the airway model. In particular, fluvoxamine, as well as aprepitant, everolimus, and sirolimus, has virus reduction efficacy comparable to the current standard of care (remdesivir, molnupiravir, nirmatrelvir). Whilst these results are encouraging, further testing and efficacy studies are required before clinical use can be considered.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Pulmón , Antivirales/farmacología , Antivirales/uso terapéutico
2.
Microorganisms ; 10(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35744614

RESUMEN

Since the identification of Hendra virus (HeV) infections in horses in Australia in 1994, more than 80 outbreaks in horses have been reported, and four out of seven spillover infections in humans had a fatal outcome. With the availability of a subunit vaccine based on the HeV-Glycoprotein (HeV-G), there is a need to serologically Differentiate the Infected from the Vaccinated Animals (DIVA). We developed an indirect ELISA using HeV-G expressed in Leishmania tarentolae and HeV-Nucleoprotein (HeV-N) expressed in recombinant baculovirus-infected insect cells as antigens. During evaluation, we tested panels of sera from naïve, vaccinated and infected horses that either originated from a Hendra-virus free region, or had been pre-tested in validated diagnostic tests. Our data confirm the reliability of this approach, as HeV-N-specific antibodies were only detected in sera from infected horses, while HeV-G-specific antibodies were detected in infected and vaccinated horses with a high level of specificity and sensitivity. Given the excellent correlation of data obtained for German and Australian HeV-negative horses, we assume that this test can be applied for the testing of horse serum samples from a variety of geographical regions.

3.
J Virol Methods ; 305: 114539, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35523370

RESUMEN

Epithelial tissue or vesicular fluid from an unruptured or recently ruptured vesicle is the sample of choice for confirmatory laboratory diagnosis of foot-and-mouth disease (FMD). However, in 'FMD-free' countries the transport and downstream processing of such samples from potentially infected animals present a biosafety risk, particularly during heightened surveillance, potentially involving decentralised testing in laboratories without adequate biocontainment facilities. In such circumstances, rapid inactivation of virus, if present, prior to transport becomes a necessity, while still maintaining the integrity of diagnostic analytes. Tongue epithelium collected from cattle infected with FMD virus (FMDV) of serotype O (O/ALG/3/2014 - Lineage O/ME-SA/Ind-2001d) or A (A/IRN/22/2015 - Lineage A/ASIA/G-VII) was incubated in the PAXGene Tissue System Fixative (pH 4) and Stabiliser (pH 6.5) components respectively, in McIlvaine's citrate-phosphate buffer (pH 2.6) or in phosphate-buffered saline (PBS, pH 7.4) at room temperature for 2, 6, 24 or 48 h. Following incubation, tissues were homogenised and tested by virus isolation and titration using LFBKαVß6 cells. The integrity of FMD viral RNA was assessed by RT-qPCR (3Dpol coding region), Sanger sequencing of the VP1 region and transfection of LFBKαVß6 cells to recover infectious virus. Viable virus could be recovered from samples incubated in PBS for at least 48 h. The PAXgene Tissue System Stabiliser component yielded variable results dependent on virus serotype, requiring at least 6 h of incubation to inactivate A/IRN/22/2015 in most samples, whereas the Fixative component required up to 2 h in some samples. McIlvaine's citrate-phosphate buffer rapidly inactivated both viruses within 2 h of incubation. There was no demonstrable degradation of FMD viral RNA resulting from incubation in any of the buffers for up to 48 h, as assessed by RT-qPCR, and 24 h by sequencing and transfection to recover infectious virus. McIlvaine's citrate-phosphate buffer (pH 2.6) is easy to prepare, inexpensive and inactivates serotype A and O FMDV in epithelial tissue within 2 h, while maintaining RNA integrity for downstream diagnostic processes and virus characterisation.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Bovinos , Citratos , Epitelio , Fijadores , Virus de la Fiebre Aftosa/genética , Fosfatos , ARN Viral/genética , Serogrupo , Lengua
4.
Viruses ; 14(4)2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35458530

RESUMEN

As existing vaccines fail to completely prevent COVID-19 infections or community transmission, there is an unmet need for vaccines that can better combat SARS-CoV-2 variants of concern (VOC). We previously developed highly thermo-tolerant monomeric and trimeric receptor-binding domain derivatives that can withstand 100 °C for 90 min and 37 °C for four weeks and help eliminate cold-chain requirements. We show that mice immunised with these vaccine formulations elicit high titres of antibodies that neutralise SARS-CoV-2 variants VIC31 (with Spike: D614G mutation), Delta and Omicron (BA.1.1) VOC. Compared to VIC31, there was an average 14.4-fold reduction in neutralisation against BA.1.1 for the three monomeric antigen-adjuvant combinations and a 16.5-fold reduction for the three trimeric antigen-adjuvant combinations; the corresponding values against Delta were 2.5 and 3.0. Our findings suggest that monomeric formulations are suitable for upcoming Phase I human clinical trials and that there is potential for increasing the efficacy with vaccine matching to improve the responses against emerging variants. These findings are consistent with in silico modelling and AlphaFold predictions, which show that, while oligomeric presentation can be generally beneficial, it can make important epitopes inaccessible and also carries the risk of eliciting unwanted antibodies against the oligomerisation domain.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Ratones , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
5.
Viruses ; 14(1)2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-35062300

RESUMEN

The recent emergence and circulation of the A/ASIA/G-VII (A/G-VII) lineage of foot-and-mouth disease virus (FMDV) in the Middle East has resulted in the development of homologous vaccines to ensure susceptible animals are sufficiently protected against clinical disease. However, a second serotype A lineage called A/ASIA/Iran-05 (A/IRN/05) continues to circulate in the region and it is therefore imperative to ensure vaccine strains used will protect against both lineages. In addition, for FMDV vaccine banks that usually hold a limited number of strains, it is necessary to include strains with a broad antigenic coverage. To assess the cross protective ability of an A/G-VII emergency vaccine (formulated at 43 (95% CI 8-230) PD50/dose as determined during homologous challenge), we performed a heterologous potency test according to the European Pharmacopoeia design using a field isolate from the A/IRN/05 lineage as the challenge virus. The estimated heterologous potency in this study was 2.0 (95% CI 0.4-6.0) PD50/dose, which is below the minimum potency recommended by the World Organisation for Animal Health (OIE). Furthermore, the cross-reactive antibody titres against the heterologous challenge virus were poor (≤log10 0.9), even in those cattle that had received the full dose of vaccine. The geometric mean r1-value was 0.2 (95% CI 0.03-0.8), similar to the potency ratio of 0.04 (95% CI 0.004-0.3). Vaccination decreased viraemia and virus excretion compared to the unvaccinated controls. Our results indicate that this A/G-VII vaccine does not provide sufficient protection against viruses belonging to the A/IRN/05 lineage and therefore the A/G-VII vaccine strain cannot replace the A/IRN/05 vaccine strain but could be considered an additional strain for use in vaccines and antigen banks.


Asunto(s)
Enfermedades de los Bovinos/prevención & control , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Inmunidad Heteróloga , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/virología , Protección Cruzada , Fiebre Aftosa/inmunología , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/aislamiento & purificación , ARN Viral/análisis , Serogrupo , Potencia de la Vacuna , Viremia/prevención & control , Viremia/veterinaria , Esparcimiento de Virus
6.
Front Immunol ; 12: 765211, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956193

RESUMEN

Saturation suppressor mutagenesis was used to generate thermostable mutants of the SARS-CoV-2 spike receptor-binding domain (RBD). A triple mutant with an increase in thermal melting temperature of ~7°C with respect to the wild-type B.1 RBD and was expressed in high yield in both mammalian cells and the microbial host, Pichia pastoris, was downselected for immunogenicity studies. An additional derivative with three additional mutations from the B.1.351 (beta) isolate was also introduced into this background. Lyophilized proteins were resistant to high-temperature exposure and could be stored for over a month at 37°C. In mice and hamsters, squalene-in-water emulsion (SWE) adjuvanted formulations of the B.1-stabilized RBD were considerably more immunogenic than RBD lacking the stabilizing mutations and elicited antibodies that neutralized all four current variants of concern with similar neutralization titers. However, sera from mice immunized with the stabilized B.1.351 derivative showed significantly decreased neutralization titers exclusively against the B.1.617.2 (delta) VOC. A cocktail comprising stabilized B.1 and B.1.351 RBDs elicited antibodies with qualitatively improved neutralization titers and breadth relative to those immunized solely with either immunogen. Immunized hamsters were protected from high-dose viral challenge. Such vaccine formulations can be rapidly and cheaply produced, lack extraneous tags or additional components, and can be stored at room temperature. They are a useful modality to combat COVID-19, especially in remote and low-resource settings.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Antivirales/inmunología , Cricetinae , Inmunogenicidad Vacunal/inmunología , Ratones , Glicoproteína de la Espiga del Coronavirus/genética
7.
Vaccines (Basel) ; 9(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34696216

RESUMEN

Vaccination is one of the best approaches to control and eradicate foot-and-mouth disease (FMD). To achieve this goal, vaccines with inactivated FMD virus antigen in suitable adjuvants are being used in addition to other control measures. However, only a limited number of vaccine strains are commercially available, which often have a restricted spectrum of activity against the different FMD virus strains in circulation. As a result, when new strains emerge, it is important to measure the efficacy of the current vaccine strains against these new variants. This is important for countries where FMD is endemic but also for countries that hold an FMD vaccine bank, to ensure they are prepared for emergency vaccination. The emergence and spread of the O/ME-SA/Ind-2001 lineage of viruses posed a serious threat to countries with OIE-endorsed FMD control plans who had not reported FMD for many years. In vitro vaccine-matching results showed a poor match (r1-value < 0.3) with the more widely used vaccine strain O1 Manisa and less protection in a challenge test. This paper describes the use of the O3039 vaccine strain as an alternative, either alone or in combination with the O1 Manisa vaccine strain with virulent challenge by a O/ME-SA/Ind-2001d sub-lineage virus from Algeria (O/ALG/3/2014). The experiment included challenge at 7 days post-vaccination (to study protection and emergency use) and 21 days post-vaccination (as in standard potency studies). The results indicated that the O3039 vaccine strain alone, as well as the combination with O1 Manisa, is effective against this strain of the O/ME-SA/Ind/2001d lineage, offering protection from clinical disease even after 7 days post-vaccination with a reduction in viraemia and virus excretion.

8.
ACS Infect Dis ; 7(8): 2546-2564, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260218

RESUMEN

The receptor binding domain (RBD) of SARS-CoV-2 is the primary target of neutralizing antibodies. We designed a trimeric, highly thermotolerant glycan engineered RBD by fusion to a heterologous, poorly immunogenic disulfide linked trimerization domain derived from cartilage matrix protein. The protein expressed at a yield of ∼80-100 mg/L in transiently transfected Expi293 cells, as well as CHO and HEK293 stable cell lines and formed homogeneous disulfide-linked trimers. When lyophilized, these possessed remarkable functional stability to transient thermal stress of up to 100 °C and were stable to long-term storage of over 4 weeks at 37 °C unlike an alternative RBD-trimer with a different trimerization domain. Two intramuscular immunizations with a human-compatible SWE adjuvanted formulation elicited antibodies with pseudoviral neutralizing titers in guinea pigs and mice that were 25-250 fold higher than corresponding values in human convalescent sera. Against the beta (B.1.351) variant of concern (VOC), pseudoviral neutralization titers for RBD trimer were ∼3-fold lower than against wildtype B.1 virus. RBD was also displayed on a designed ferritin-like Msdps2 nanoparticle. This showed decreased yield and immunogenicity relative to trimeric RBD. Replicative virus neutralization assays using mouse sera demonstrated that antibodies induced by the trimers neutralized all four VOC to date, namely B.1.1.7, B.1.351, P.1, and B.1.617.2 without significant differences. Trimeric RBD immunized hamsters were protected from viral challenge. The excellent immunogenicity, thermotolerance, and high yield of these immunogens suggest that they are a promising modality to combat COVID-19, including all SARS-CoV-2 VOC to date.


Asunto(s)
COVID-19 , Termotolerancia , Animales , Anticuerpos Antivirales , COVID-19/terapia , Cobayas , Células HEK293 , Humanos , Inmunización Pasiva , Ratones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Sueroterapia para COVID-19
9.
Vaccines (Basel) ; 8(1)2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947514

RESUMEN

Since 2015, outbreaks of foot-and-mouth disease (FMD) in the Middle East have been caused by a new emerging viral lineage, A/ASIA/G-VII. Invitro vaccine matching data indicated that this virus poorly matched (low r1-value) with vaccines that were being used in the region as well as most other commercially available vaccines. The aim of this study was to assess the performance of two candidate vaccines against challenge with a representative field virus from the A/ASIA/G-VII lineage. The results from an initial full dose protection study provided encouraging data for the A/MAY/97 vaccine, while the A22/IRQ/64 vaccine only protected 2/7 vaccinated animals. In view of these promising results, this vaccine was tested in a potency test (PD50) experiment in which 5 cattle were vaccinated with a full dose, 5 cattle with a 1/3 dose and 5 cattle with a 1/9 dose of vaccine. At 21 days post vaccination these vaccinated cattle and 3 control cattle were challenged intradermolingually with a field isolate from the A/ASIA/G-VII lineage. The intra-serotype heterologous potency test resulted in an intra-serotype heterologous potency of 6.5 PD50/dose. These data support previous studies showing that a high potency emergency vaccine can protect against clinical disease when challenged with a heterologous strain of the same serotype, indicating that not only the r1-value of the vaccine, but also the homologous potency of a vaccine should be taken into account when advising vaccines to control an outbreak.

10.
J Virol Methods ; 276: 113770, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31705919

RESUMEN

During a foot-and-mouth disease (FMD) outbreak, transport and testing of potentially infectious samples, including epithelium from suspect lesions, presents a biosafety risk, particularly in FMD-free countries. Therefore, treatment to inactivate virus prior to transport is important. Tongue epithelium from cattle infected with FMD virus (FMDV) serotype O (O ALG/3/2014 - Lineage O/ME-SA/Ind-2001d) or A (A IRN/22/2015 - Lineage A/ASIA/G-VII) was incubated in RNAlater, RNA Shield or phosphate-buffered saline (pH 7.4) at room temperature for 2, 6, 24 or 48 h. After incubation, tissues were homogenised and tested by virus titration. Viral RNA in the homogenate was quantified by RT-qPCR, used for sequencing, and transfected into LFBKαVß6 cells to recover infectious virus. RNAlater reduced A IRN/22/2015 titres by 4 log10 after 24 h, and completely after 48 h incubation. While O ALG/3/2014 was detected by VI after 2, 6 and 24 h, titration yielded no infectious virus, likely as a result of freeze-thawing. RNA Shield was cytotoxic at high concentrations but was effective at inactivating both strains after 24 h. Regardless of reagent or inactivation period, RT-qPCR, VP1 sequencing, and transfection of RNA to recover infectious virus were possible. RNA Shield appears a better choice for FMDV inactivation in tissues, however 24 h incubation is recommended.


Asunto(s)
Epitelio/virología , Virus de la Fiebre Aftosa/fisiología , Manejo de Especímenes/métodos , Inactivación de Virus , Animales , Bovinos , Contención de Riesgos Biológicos , Virus de la Fiebre Aftosa/efectos de los fármacos , Lengua/citología , Lengua/virología , Transportes
11.
Vet Ital ; 51(1): 31-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25842211

RESUMEN

In this study, the nucleotide sequences of the complete leader proteinase (Lpro) region of 21 isolates of foot-and-mouth disease virus (FMDV) serotype O collected during various outbreaks in India were sequenced and compared with vaccine strains. The phylogenetic analysis of these Lpro sequences showed a difference in the clustering of the isolates based on the VP1 capsid coding region sequences. The comparison of amino acid sequences at the N terminus end of the Lpro region showed very high variability, although 2 conserved start codons (AUG) at 1st and 29th sites. Furthermore, all the amino acid residues that formed the active cleft site of the Lpro sequences of this study were conserved. These results suggest that Lpro sequences could also be used for phylogenetic comparison of FMDV isolates.


Asunto(s)
Enfermedades de los Bovinos/virología , Virus de la Fiebre Aftosa/clasificación , Virus de la Fiebre Aftosa/genética , Fiebre Aftosa/virología , Proteínas de la Membrana/genética , Serina Endopeptidasas/genética , Animales , Secuencia de Bases , Bovinos , Virus de la Fiebre Aftosa/aislamiento & purificación , India , Filogenia , Serogrupo
12.
Clin Vaccine Immunol ; 17(8): 1252-60, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20592114

RESUMEN

Quantification of hepatitis B surface antigen (HBsAg) or relative in vitro potency in the final vaccines is a prerequisite for hepatitis B vaccine batch release. The commercial kit for automated analysis (AxSYM) is expensive, and an alternative is required for the estimation of HBsAg in hepatitis B vaccines. Mouse monoclonal antibodies (MAbs) specific for HBsAg were developed and characterized. One of the monoclonal antibodies (HBs06) was used in development of an immunocapture ELISA (IC-ELISA) as an unlabeled capture antibody and biotin-labeled detection antibody. The IC-ELISA was standardized and validated using experimental hepatitis B vaccine batches with various HBsAg concentrations per dose and commercial vaccines. The vaccine was treated with an alkaline solubilizer to desorb the HBsAg from Algel-adjuvanted vaccines before testing, and the sensitivity of the test was 5 ng/ml. A good correlation could be observed between the HBsAg estimates derived by both formats, except for the higher HBsAg concentration range, where the IC-ELISA format could estimate closer to the actual values than AxSYM. There was a significant correlation between the estimated relative potencies of the two methods. There was lack of correlation between the in vivo potency and the relative in vitro potency. However, the estimates of IC-ELISA were comparable to the in vivo values when compared with the estimates of AxSYM. The IC-ELISA can therefore be considered to be a reliable test for deriving in vitro relative potency and antigen concentration in vaccine batches for batch control and release.


Asunto(s)
Antígenos de Superficie de la Hepatitis B/análisis , Vacunas contra Hepatitis B/química , Tecnología Farmacéutica/métodos , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/normas , Anticuerpos contra la Hepatitis B/aislamiento & purificación , Antígenos de Superficie de la Hepatitis B/inmunología , Vacunas contra Hepatitis B/inmunología , Humanos , Ratones , Ratones Endogámicos BALB C , Control de Calidad , Sensibilidad y Especificidad
13.
Clin Vaccine Immunol ; 17(8): 1261-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20573881

RESUMEN

The potency of rabies vaccines, determined using the NIH mouse protection test, can be directly correlated to the amount of rabies virus glycoprotein (RV GP) present in the vaccine. In an effort to develop a simple and sensitive enzyme-linked immunosorbent assay (ELISA) using recombinant diabody for quantification of RV GP, the variable heavy (V(H)) and light chain (V(L)) domains of an RV GP-specific human monoclonal antibody (MAb) secreted by a human x mouse heterohybridoma (human MAb R16E5) was amplified, linked using splicing by overlap extension PCR (SOE PCR), and expressed as a recombinant diabody (D06) in the pET28a bacterial expression system. The diabody D06 was purified by immobilized metal affinity chromatography on a nickel-nitrilotriacetic acid (NTA) agarose column and characterized. The purified diabody was used in combination with a well-characterized RV GP-specific mouse MAb, M5B4, to develop an immunocapture ELISA (IC-ELISA) for the quantification of RV GP in human rabies vaccine preparations. The maximum detection limit of the IC-ELISA using the M5B4-D06 combination was up to 31.25 ng/ml of RV GP. The specificity of the diabody was established by its nonreactivity toward other human viral antigens as determined by ELISA and toward RV GP as determined by immunoblot transfer assay and competitive ELISA with the parent human MAb R16E5 and MAb M5B4. The adjusted r(2) value obtained by the regression through the origin model was 0.902, and the equation for predicted potency values for M5B4-D06-based IC-ELISA and MAb M5B4 IC-ELISA were 0.5651x and 0.8044x, respectively, where x is the estimate of RV GP from the IC-ELISA in micrograms. Analysis of variance (ANOVA) results showed the estimates of the two methods differed significantly (P < 0.001), while the predicted potencies by the two tests did not differ significantly (P > 0.05). The IC-ELISA can be readily adapted to measure the RV GP content in purified antigen, and a vaccine can be formulated based on the estimated GP.


Asunto(s)
Glicoproteínas/análisis , Vacunas Antirrábicas/química , Tecnología Farmacéutica/métodos , Proteínas Virales/análisis , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/normas , Glicoproteínas/inmunología , Humanos , Ratones , Control de Calidad , Vacunas Antirrábicas/inmunología , Proteínas Recombinantes/aislamiento & purificación , Sensibilidad y Especificidad , Proteínas Virales/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...