Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Neurosci ; 21(7): 1016, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29703932

RESUMEN

In the version of this article initially published, NIH grant U01 MH106882 to F.H.G. was missing from the Acknowledgments. The error has been corrected in the HTML and PDF versions of the article.

3.
Nat Neurosci ; 19(12): 1583-1591, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27618310

RESUMEN

The healthy human brain is a mosaic of varied genomes. Long interspersed element-1 (LINE-1 or L1) retrotransposition is known to create mosaicism by inserting L1 sequences into new locations of somatic cell genomes. Using a machine learning-based, single-cell sequencing approach, we discovered that somatic L1-associated variants (SLAVs) are composed of two classes: L1 retrotransposition insertions and retrotransposition-independent L1-associated variants. We demonstrate that a subset of SLAVs comprises somatic deletions generated by L1 endonuclease cutting activity. Retrotransposition-independent rearrangements in inherited L1s resulted in the deletion of proximal genomic regions. These rearrangements were resolved by microhomology-mediated repair, which suggests that L1-associated genomic regions are hotspots for somatic copy number variants in the brain and therefore a heritable genetic contributor to somatic mosaicism. We demonstrate that SLAVs are present in crucial neural genes, such as DLG2 (also called PSD93), and affect 44-63% of cells of the cells in the healthy brain.


Asunto(s)
Encéfalo/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , Neuronas/metabolismo , Células Cultivadas , Dosificación de Gen , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Humanos , Eliminación de Secuencia
4.
J Neurosci ; 32(10): 3376-87, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22399759

RESUMEN

Neural stem cells (NSCs) generate neurons throughout life in the hippocampal dentate gyrus (DG). How gene expression signatures differ among NSCs and immature neurons remains largely unknown. We isolated NSCs and their progeny in the adult DG using transgenic mice expressing a GFP reporter under the control of the Sox2 promoter (labeling NSCs) and transgenic mice expressing a DsRed reporter under the control of the doublecortin (DCX) promoter (labeling immature neurons). Transcriptome analyses revealed distinct gene expression profiles between NSCs and immature neurons. Among the genes that were expressed at significantly higher levels in DG NSCs than in immature neurons was the growth factor insulin-like growth factor 2 (IGF2). We show that IGF2 selectively controls proliferation of DG NSCs in vitro and in vivo through AKT-dependent signaling. Thus, by gene expression profiling of NSCs and their progeny, we have identified IGF2 as a novel regulator of adult neurogenesis.


Asunto(s)
Células Madre Adultas/fisiología , Diferenciación Celular/genética , Perfilación de la Expresión Génica/métodos , Hipocampo/fisiología , Factor II del Crecimiento Similar a la Insulina/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/genética , Células Madre Adultas/citología , Animales , Células Cultivadas , Proteína Doblecortina , Femenino , Hipocampo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/citología , Neuronas/citología , Neuronas/fisiología , Transcriptoma/genética
5.
Trends Neurosci ; 33(8): 345-54, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20471112

RESUMEN

LINE-1 (L1) elements are retrotransposons that insert extra copies of themselves throughout the genome using a 'copy and paste' mechanism. L1s comprise nearly approximately 20% of the human genome and are able to influence chromosome integrity and gene expression upon reinsertion. Recent studies show that L1 elements are active and 'jumping' during neuronal differentiation. New somatic L1 insertions could generate 'genomic plasticity' in neurons by causing variation in genomic DNA sequences and by altering the transcriptome of individual cells. Thus, L1-induced variation could affect neuronal plasticity and behavior. We discuss potential consequences of L1-induced neuronal diversity and propose that a mechanism for generating diversity in the brain could broaden the spectrum of behavioral phenotypes that can originate from any single genome.


Asunto(s)
Elementos de Nucleótido Esparcido Largo/genética , Neurogénesis/genética , Retroelementos/genética , Encéfalo/fisiología , Genoma Humano , Humanos , Neuronas/fisiología
6.
PLoS Genet ; 2(9): e144, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17044735

RESUMEN

Recombinant populations were the basis for Mendel's first genetic experiments and continue to be key to the study of genes, heredity, and genetic variation today. Genotyping several hundred thousand loci in a single assay by hybridizing genomic DNA to oligonucleotide arrays provides a powerful technique to improve precision linkage mapping. The genotypes of two accessions of Arabidopsis were compared by using a 400,000 feature exon-specific oligonucleotide array. Around 16,000 single feature polymorphisms (SFPs) were detected in approximately 8,000 of the approximately 26,000 genes represented on the array. Allelic variation at these loci was measured in a recombinant inbred line population, which defined the location of 815 recombination breakpoints. The genetic linkage map had a total length of 422.5 cM, with 676 informative SFP markers representing intervals of approximately 0.6 cM. One hundred fifteen single gene intervals were identified. Recombination rate, SFP distribution, and segregation in this population are not uniform. Many genomic regions show a clustering of recombination events including significant hot spots. The precise haplotype structure of the recombinant population was defined with unprecedented accuracy and resolution. The resulting linkage map allows further refinement of the hundreds of quantitative trait loci identified in this well-studied population. Highly variable recombination rates along each chromosome and extensive segregation distortion were observed in the population.


Asunto(s)
Arabidopsis/genética , Exones/genética , Genoma de Planta/genética , Hibridación de Ácido Nucleico/métodos , Mapeo Físico de Cromosoma/métodos , Recombinación Genética , Segregación Cromosómica/genética , Cromosomas de las Plantas/genética , Dosificación de Gen , Polimorfismo Genético
8.
PLoS Biol ; 1(3): E67, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14691539

RESUMEN

Heritable, but reversible, changes in transposable element activity were first observed in maize by Barbara McClintock in the 1950s. More recently, transposon silencing has been associated with DNA methylation, histone H3 lysine-9 methylation (H3mK9), and RNA interference (RNAi). Using a genetic approach, we have investigated the role of these modifications in the epigenetic regulation and inheritance of six Arabidopsis transposons. Silencing of most of the transposons is relieved in DNA methyltransferase (met1), chromatin remodeling ATPase (ddm1), and histone modification (sil1) mutants. In contrast, only a small subset of the transposons require the H3mK9 methyltransferase KRYPTONITE, the RNAi gene ARGONAUTE1, and the CXG methyltransferase CHROMOMETHYLASE3. In crosses to wild-type plants, epigenetic inheritance of active transposons varied from mutant to mutant, indicating these genes differ in their ability to silence transposons. According to their pattern of transposon regulation, the mutants can be divided into two groups, which suggests that there are distinct, but interacting, complexes or pathways involved in transposon silencing. Furthermore, different transposons tend to be susceptible to different forms of epigenetic regulation.


Asunto(s)
Arabidopsis/genética , Elementos Transponibles de ADN , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Histonas/metabolismo , ARN Interferente Pequeño/genética , Adenosina Trifosfatasas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Biología Computacional , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Cartilla de ADN/química , Proteínas de Unión al ADN/metabolismo , ADN-Citosina Metilasas , Silenciador del Gen , N-Metiltransferasa de Histona-Lisina/genética , Modelos Genéticos , Mutación , Sistemas de Lectura Abierta , Reacción en Cadena de la Polimerasa , Interferencia de ARN , Factores de Transcripción/metabolismo , Transcripción Genética
9.
Methods Mol Biol ; 236: 241-72, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14501069

RESUMEN

Thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR) is a fast and efficient method to amplify unknown sequences adjacent to known insertion sites in Arabidopsis. Nested, insertion-specific primers are used together with arbitrary degenerate primers (AD primers), which are designed to differ in their annealing temperatures. Alternating cycles of high and low annealing temperature yield specific products bordered by an insertion-specific primer on one side and an AD primer on the other. Further specificity is obtained through subsequent rounds of TAIL-PCR, using nested insertion-specific primers. The increasing availability of whole genome sequences renders TAIL-PCR an attractive tool to easily identify insertion sites in large genome tagging populations through the direct sequencing of TAIL-PCR products. For large-scale functional genomics approaches, it is desirable to obtain flanking sequences for each individual in the population in a fast and cost-effective manner. In this chapter, we describe a TAIL-PCR method amenable for high-throughput production (HT-TAIL-PCR) in Arabidopsis. Based on this protocol, HT-TAIL-PCR may be easily adapted for other organisms.


Asunto(s)
Arabidopsis/genética , Elementos Transponibles de ADN/genética , ADN de Plantas/genética , Plantas/genética , Reacción en Cadena de la Polimerasa/métodos , Secuencia de Bases , Cartilla de ADN , ADN Bacteriano/genética , ADN de Plantas/química , Eliminación de Gen , Indicadores y Reactivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...