Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 119: 465-481, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38552926

RESUMEN

Microglia modulate synaptic refinement in the central nervous system (CNS). We have previously shown that a mouse model with innate high anxiety-related behavior (HAB) displays higher CD68+ microglia density in the key regions of anxiety circuits compared to mice with normal anxiety-related behavior (NAB) in males, and that minocycline treatment attenuated the enhanced anxiety of HAB male. Given that a higher prevalence of anxiety is widely reported in females compared to males, little is known concerning sex differences at the cellular level. Herein, we address this by analyzing microglia heterogeneity and function in the HAB and NAB brains of both sexes. Single-cell RNA sequencing revealed ten distinct microglia clusters varied by their frequency and gene expression profile. We report striking sex differences, especially in the major microglia clusters of HABs, indicating a higher expression of genes associated with phagocytosis and synaptic engulfment in the female compared to the male. On a functional level, we show that female HAB microglia engulfed a greater amount of hippocampal vGLUT1+ excitatory synapses compared to the male. We moreover show that female HAB microglia engulfed more synaptosomes compared to the male HAB in vitro. Due to previously reported effects of minocycline on microglia, we finally administered oral minocycline to HABs of both sexes and showed a significant reduction in the engulfment of synapses by female HAB microglia. In parallel to our microglia-specific findings, we further showed an anxiolytic effect of minocycline on female HABs, which is complementary to our previous findings in the male HABs. Our study, therefore, identifies the altered function of synaptic engulfment by microglia as a potential avenue to target and resolve microglia heterogeneity in mice with innate high anxiety.

2.
Transl Psychiatry ; 14(1): 11, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191458

RESUMEN

The ventromedial prefrontal cortex (vmPFC; rodent infralimbic cortex (IL)), is posited to be an important locus of fear extinction-facilitating effects of the dopamine (DA) bio-precursor, L-DOPA, but this hypothesis remains to be formally tested. Here, in a model of impaired fear extinction (the 129S1/SvImJ inbred mouse strain; S1), we monitored extracellular DA dynamics via in vivo microdialysis in IL during fear extinction and following L-DOPA administration. Systemic L-DOPA caused sustained elevation of extracellular DA levels in IL and increased neuronal activation in a subpopulation of IL neurons. Systemic L-DOPA enabled extinction learning and promoted extinction retention at one but not ten days after training. Conversely, direct microinfusion of DA into IL produced long-term fear extinction (an effect that was insensitive to ɑ-/ß-adrenoreceptor antagonism). However, intra-IL delivery of a D1-like or D2 receptor agonist did not facilitate extinction. Using ex vivo multi-electrode array IL neuronal recordings, along with ex vivo quantification of immediate early genes and DA receptor signalling markers in mPFC, we found evidence of reduced DA-evoked mPFC network responses in S1 as compared with extinction-competent C57BL/6J mice that were partially driven by D1 receptor activation. Together, our data demonstrate that locally increasing DA in IL is sufficient to produce lasting rescue of impaired extinction. The finding that systemic L-DOPA increased IL DA levels, but had only transient effects on extinction, suggests L-DOPA failed to reach a threshold level of IL DA or produced opposing behavioural effects in other brain regions. Collectively, our findings provide further insight into the neural basis of the extinction-promoting effects of DA and L-DOPA in a clinically relevant animal model, with possible implications for therapeutically targeting the DA system in anxiety and trauma-related disorders.


Asunto(s)
Dopamina , Levodopa , Animales , Ratones , Ratones Endogámicos C57BL , Levodopa/farmacología , Extinción Psicológica , Miedo , Corteza Prefrontal
3.
Biomolecules ; 13(9)2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37759815

RESUMEN

The high structural similarity, especially in transmembrane regions, of dopamine, norepinephrine, and serotonin transporters, as well as the lack of all crystal structures of human isoforms, make the specific targeting of individual transporters rather challenging. Ligand design itself is also rather limited, as many chemists, fully aware of the synthetic and analytical challenges, tend to modify lead compounds in a way that reduces the number of chiral centers and hence limits the potential chemical space of synthetic ligands. We have previously shown that increasing molecular complexity by introducing additional chiral centers ultimately leads to more selective and potent dopamine reuptake inhibitors. Herein, we significantly extend our structure-activity relationship of dopamine transporter-selective ligands and further demonstrate how stereoisomers of defined absolute configuration may fine-tune and direct the activity towards distinct targets. From the pool of active compounds, using the examples of stereoisomers 7h and 8h, we further showcase how in vitro activity significantly differs in in vivo drug efficacy experiments, calling for proper validation of individual stereoisomers in animal studies. Furthermore, by generating a large library of compounds with defined absolute configurations, we lay the groundwork for computational chemists to further optimize and rationally design specific monoamine transporter reuptake inhibitors.


Asunto(s)
Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Animales , Humanos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Transporte Biológico , Relación Estructura-Actividad , Norepinefrina , Ligandos
4.
JCI Insight ; 8(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37698939

RESUMEN

Germline de novo missense variants of the CACNA1D gene, encoding the pore-forming α1 subunit of Cav1.3 L-type Ca2+ channels (LTCCs), have been found in patients with neurodevelopmental and endocrine dysfunction, but their disease-causing potential is unproven. These variants alter channel gating, enabling enhanced Cav1.3 activity, suggesting Cav1.3 inhibition as a potential therapeutic option. Here we provide proof of the disease-causing nature of such gating-modifying CACNA1D variants using mice (Cav1.3AG) containing the A749G variant reported de novo in a patient with autism spectrum disorder (ASD) and intellectual impairment. In heterozygous mutants, native LTCC currents in adrenal chromaffin cells exhibited gating changes as predicted from heterologous expression. The A749G mutation induced aberrant excitability of dorsomedial striatum-projecting substantia nigra dopamine neurons and medium spiny neurons in the dorsal striatum. The phenotype observed in heterozygous mutants reproduced many of the abnormalities described within the human disease spectrum, including developmental delay, social deficit, and pronounced hyperactivity without major changes in gross neuroanatomy. Despite an approximately 7-fold higher sensitivity of A749G-containing channels to the LTCC inhibitor isradipine, oral pretreatment over 2 days did not rescue the hyperlocomotion. Cav1.3AG mice confirm the pathogenicity of the A749G variant and point toward a pathogenetic role of altered signaling in the dopamine midbrain system.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Animales , Ratones , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Mutación , Dopamina , Fenotipo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo
5.
Front Psychiatry ; 14: 1094948, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846243

RESUMEN

The hunger hormone ghrelin has been implicated in the modulation of anxiety- and fear-related behaviors in rodents and humans, while its dysregulation may be associated with psychiatric illness. Along these lines, the ghrelin system has been suggested as a potential target to facilitate fear extinction, which is the main mechanism underlying cognitive behavioral therapy. So far, this hypothesis has not been tested in individuals that have difficulties to extinguish fear. Thus, we investigated pharmacological (ghrelin receptor agonist MK0677) and non-pharmacological (overnight fasting) strategies to target the ghrelin system in the 129S1/SvImJ (S1) mouse strain, which models the endophenotype of impaired fear extinction that has been associated with treatment resistance in anxiety and PTSD patients. MK0677 induced food intake and overnight fasting increased plasma ghrelin levels in S1 mice, suggesting that the ghrelin system is responsive in the S1 strain. However, neither systemic administration of MK0677 nor overnight fasting had an effect on fear extinction in S1 mice. Similarly, our groups previously reported that both interventions did not attenuate fear in extinction-competent C57BL/6J mice. In summary, our findings are in contrast to several studies reporting beneficial effects of GHSR agonism and overnight fasting on fear- and anxiety-related behaviors in rodents. Rather, our data agree with accumulating evidence of divergent behavioral effects of ghrelin system activation and underscore the hypothesis that potential benefits of targeting the ghrelin system in fear extinction may be dependent on factors (e.g., previous stress exposure) that are not yet fully understood.

6.
Neuropharmacology ; 226: 109418, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36623804

RESUMEN

Psychiatric disorders associated with psychological trauma, stress and anxiety are a highly prevalent and increasing cause of morbidity worldwide. Current therapeutic approaches, including medication, are effective in alleviating symptoms of anxiety disorders and posttraumatic stress disorder (PTSD), at least in some individuals, but have unwanted side-effects and do not resolve underlying pathophysiology. After a period of stagnation, there is renewed enthusiasm from public, academic and commercial parties in designing and developing drug treatments for these disorders. Here, we aim to provide a snapshot of the current state of this field that is written for neuropharmacologists, but also practicing clinicians and the interested lay-reader. After introducing currently available drug treatments, we summarize recent/ongoing clinical assessment of novel medicines for anxiety and PTSD, grouped according to primary neurochemical targets and their potential to produce acute and/or enduring therapeutic effects. The evaluation of putative treatments targeting monoamine (including psychedelics), GABA, glutamate, cannabinoid, cholinergic and neuropeptide systems, amongst others, are discussed. We emphasize the importance of designing and clinically assessing new medications based on a firm understanding of the underlying neurobiology stemming from the rapid advances being made in neuroscience. This includes harnessing neuroplasticity to bring about lasting beneficial changes in the brain rather than - as many current medications do - produce a transient attenuation of symptoms, as exemplified by combining psychotropic/cognitive enhancing drugs with psychotherapeutic approaches. We conclude by noting some of the other emerging trends in this promising new phase of drug development.


Asunto(s)
Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/tratamiento farmacológico , Trastornos por Estrés Postraumático/psicología , Trastornos de Ansiedad/tratamiento farmacológico , Ansiedad/tratamiento farmacológico
7.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361832

RESUMEN

Neuroinflammation is discussed to play a role in specific subgroups of different psychiatric disorders, including anxiety disorders. We have previously shown that a mouse model of trait anxiety (HAB) displays enhanced microglial density and phagocytic activity in key regions of anxiety circuits compared to normal-anxiety controls (NAB). Using minocycline, we provided causal evidence that reducing microglial activation within the dentate gyrus (DG) attenuated enhanced anxiety in HABs. Besides pharmacological intervention, "positive environmental stimuli", which have the advantage of exerting no side-effects, have been shown to modulate inflammation-related markers in human beings. Therefore, we now investigated whether environmental enrichment (EE) would be sufficient to modulate upregulated neuroinflammation in high-anxiety HABs. We show for the first time that EE can indeed attenuate enhanced trait anxiety, even when presented as late as adulthood. We further found that EE-induced anxiolysis was associated with the attenuation of enhanced microglial density (using Iba-1 as the marker) in the DG and medial prefrontal cortex. Additionally, EE reduced Iba1 + CD68+ microglia density within the anterior DG. Hence, the successful attenuation of trait anxiety by EE was associated in part with the normalization of neuro-inflammatory imbalances. These results suggest that pharmacological and/or positive behavioral therapies triggering microglia-targeted anti-inflammatory effects could be promising as novel alternatives or complimentary anxiolytic therapeutic approaches in specific subgroups of individuals predisposed to trait anxiety.


Asunto(s)
Ansiedad , Microglía , Animales , Ratones , Humanos , Adulto , Ansiedad/tratamiento farmacológico , Trastornos de Ansiedad , Modelos Animales de Enfermedad , Minociclina/farmacología , Minociclina/uso terapéutico , Hipocampo
8.
Prog Neurobiol ; 217: 102333, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35872219

RESUMEN

The neurotrophin brain-derived neurotrophic factor (BDNF) stimulates adult neurogenesis, but also influences structural plasticity and function of serotonergic neurons. Both, BDNF/TrkB signaling and the serotonergic system modulate behavioral responses to stress and can lead to pathological states when dysregulated. The two systems have been shown to mediate the therapeutic effect of antidepressant drugs and to regulate hippocampal neurogenesis. To elucidate the interplay of both systems at cellular and behavioral levels, we generated a transgenic mouse line that overexpresses BDNF in serotonergic neurons in an inducible manner. Besides displaying enhanced hippocampus-dependent contextual learning, transgenic mice were less affected by chronic social defeat stress (CSDS) compared to wild-type animals. In parallel, we observed enhanced serotonergic axonal sprouting in the dentate gyrus and increased neural stem/progenitor cell proliferation, which was uniformly distributed along the dorsoventral axis of the hippocampus. In the forced swim test, BDNF-overexpressing mice behaved similarly as wild-type mice treated with the antidepressant fluoxetine. Our data suggest that BDNF released from serotonergic projections exerts this effect partly by enhancing adult neurogenesis. Furthermore, independently of the genotype, enhanced neurogenesis positively correlated with the social interaction time after the CSDS, a measure for stress resilience.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neuronas Serotoninérgicas , Animales , Antidepresivos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Fluoxetina/metabolismo , Fluoxetina/farmacología , Hipocampo/metabolismo , Ratones , Ratones Transgénicos , Neurogénesis/fisiología , Neuronas Serotoninérgicas/metabolismo
9.
Biomolecules ; 12(4)2022 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-35454095

RESUMEN

Previous studies have shown that atypical dopamine-transporter-inhibitors such as modafinil and its analogues modify behavioral and cognitive functions in rodents. Here, we tested potential promnestic effects of the novel, more dopamine-transporter selective modafinil analogue CE-158 in the social discrimination memory task in male mice. Systemic administration of CE-158 1 h before the social learning event prevented the impairment of social-recognition memory following retroactive interference 3 h after the learning session of a juvenile conspecific. This effect was dose-dependent, as mice treated with 10 mg/kg, but not with 1 mg/kg CE-158, were able to discriminate between the novel and familiar conspecific despite the presentation of an interference stimulus, both 3 h and 6 h post learning. However, when 10 mg/kg of the drug was administered after learning, CE-158 failed to prevent social memory from interference. Paralleling these behavioral effects, the systemic administration of 10 mg/kg CE-158 caused a rapid and sustained elevation of extracellular dopamine in the nucleus accumbens, a brain area where dopaminergic signaling plays a key role in learning and memory function, of freely moving mice, while 1 mg/kg was not sufficient for altering dopamine levels. Taken together, our findings suggest promnestic effects of the novel dopamine-transporter-inhibitor CE-158 in a social recognition memory test that may be in part mediated via increased dopamine-neurotransmission in the nucleus accumbens. Thus, selective-dopamine-transporter-inhibitors such as CE-158 may represent interesting drug candidates for the treatment of memory complaints observed in humans with cognitive impairments and dementia.


Asunto(s)
Dopamina , Núcleo Accumbens , Animales , Aprendizaje , Masculino , Ratones , Modafinilo/farmacología , Reconocimiento en Psicología
10.
Mol Psychiatry ; 26(12): 7076-7090, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34244620

RESUMEN

Aging-related neurological deficits negatively impact mental health, productivity, and social interactions leading to a pronounced socioeconomic burden. Since declining brain dopamine signaling during aging is associated with the onset of neurological impairments, we produced a selective dopamine transporter (DAT) inhibitor to restore endogenous dopamine levels and improve cognitive function. We describe the synthesis and pharmacological profile of (S,S)-CE-158, a highly specific DAT inhibitor, which increases dopamine levels in brain regions associated with cognition. We find both a potentiation of neurotransmission and coincident restoration of dendritic spines in the dorsal hippocampus, indicative of reinstatement of dopamine-induced synaptic plasticity in aging rodents. Treatment with (S,S)-CE-158 significantly improved behavioral flexibility in scopolamine-compromised animals and increased the number of spontaneously active prefrontal cortical neurons, both in young and aging rodents. In addition, (S,S)-CE-158 restored learning and memory recall in aging rats comparable to their young performance in a hippocampus-dependent hole board test. In sum, we present a well-tolerated, highly selective DAT inhibitor that normalizes the age-related decline in cognitive function at a synaptic level through increased dopamine signaling.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Plasticidad Neuronal , Envejecimiento , Animales , Encéfalo , Hipocampo , Plasticidad Neuronal/fisiología , Ratas
11.
Front Hum Neurosci ; 15: 686433, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262442

RESUMEN

Introduction: Various functional neuroimaging studies help to better understand the changes in brain activity during meditation. The purpose of this study was to investigate how brain energy metabolism changes during focused attention meditation (FAM) state, measured by phosphorous magnetic resonance spectroscopy (31P-MRS). Methods: 31P-MRS imaging was carried out in 27 participants after 7 weeks of FAM training. Metabolite ratios and the absolute values of metabolites were assessed after meditation training in two MRI measurements, by comparing effects in a FAM state with those in a distinct focused attention awake state during a backwards counting task. Results: The results showed decreased phosphocreatine/ATP (PCr/ATP), PCr/ inorganic phosphate (Pi), and intracellular pH values in the entire brain, but especially in basal ganglia, frontal lobes, and occipital lobes, and increased Pi/ATP ratio, cerebral Mg, and Pi absolute values were found in the same areas during FAM compared to the control focused attention awake state. Conclusions: Changes in the temporal areas and basal ganglia may be interpreted as a higher energetic state induced by meditation, whereas the frontal and occipital areas showed changes that may be related to a down-regulation in ATP turnover, energy state, and oxidative capacity.

12.
Nat Commun ; 12(1): 4156, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230461

RESUMEN

Fear extinction is an adaptive process whereby defensive responses are attenuated following repeated experience of prior fear-related stimuli without harm. The formation of extinction memories involves interactions between various corticolimbic structures, resulting in reduced central amygdala (CEA) output. Recent studies show, however, the CEA is not merely an output relay of fear responses but contains multiple neuronal subpopulations that interact to calibrate levels of fear responding. Here, by integrating behavioural, in vivo electrophysiological, anatomical and optogenetic approaches in mice we demonstrate that fear extinction produces reversible, stimulus- and context-specific changes in neuronal responses to conditioned stimuli in functionally and genetically defined cell types in the lateral (CEl) and medial (CEm) CEA. Moreover, we show these alterations are absent when extinction is deficient and that selective silencing of protein kinase C delta-expressing (PKCδ) CEl neurons impairs fear extinction. Our findings identify CEA inhibitory microcircuits that act as critical elements within the brain networks mediating fear extinction.


Asunto(s)
Núcleo Amigdalino Central/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Animales , Conducta Animal , Condicionamiento Clásico/fisiología , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo
13.
Sci Rep ; 11(1): 8978, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33903668

RESUMEN

Sleep disturbances are a common complaint of anxiety patients and constitute a hallmark feature of post-traumatic stress disorder (PTSD). Emerging evidence suggests that poor sleep is not only a secondary symptom of anxiety- and trauma-related disorders but represents a risk factor in their development, for example by interfering with emotional memory processing. Fear extinction is a critical mechanism for the attenuation of fearful and traumatic memories and multiple studies suggest that healthy sleep is crucial for the formation of extinction memories. However, fear extinction is often impaired in anxiety- and trauma-related disorders-an endophenotype that is perfectly modelled in the 129S1/SvImJ inbred mouse strain. To investigate whether these mice exhibit altered sleep at baseline that could predispose them towards maladaptive fear processing, we compared their circadian sleep/wake patterns to those of typically extinction-competent C57BL/6 mice. We found significant differences regarding diurnal distribution of sleep and wakefulness, but also sleep architecture, spectral features and sleep spindle events. With regard to sleep disturbances reported by anxiety- and PTSD patients, our findings strengthen the 129S1/SvImJ mouse models' face validity and highlight it as a platform to investigate novel, sleep-focused diagnostic and therapeutic strategies. Whether the identified alterations causally contribute to its pathological anxiety/PTSD-like phenotype will, however, have to be addressed in future studies.


Asunto(s)
Modelos Genéticos , Trastornos del Sueño-Vigilia , Trastornos por Estrés Postraumático , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Mutantes , Trastornos del Sueño-Vigilia/genética , Trastornos del Sueño-Vigilia/fisiopatología , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/fisiopatología
14.
Addict Biol ; 26(1): e12878, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31984611

RESUMEN

Social interaction in an alternative context can be beneficial against drugs of abuse. Stress is known to be a risk factor that can exacerbate the effects of addictive drugs. In this study, we investigated whether the positive effects of social interaction are mediated through a decrease in stress levels. For that purpose, rats were trained to express cocaine or social interaction conditioned place preference (CPP). Behavioural, hormonal, and molecular stress markers were evaluated. We found that social CPP decreased the percentage of incorrect transitions of grooming and corticosterone to the level of naïve untreated rats. In addition, corticotropin-releasing factor (CRF) was increased in the bed nucleus of stria terminalis after cocaine CPP. In order to study the modulation of social CPP by the CRF system, rats received intracerebroventricular CRF or alpha-helical CRF, a nonselective antagonist of CRF receptors. The subsequent effects on CPP to cocaine or social interaction were observed. CRF injections increased cocaine CPP, whereas alpha-helical CRF injections decreased cocaine CPP. However, alpha-helical CRF injections potentiated social CPP. When social interaction was made available in an alternative context, CRF-induced increase of cocaine preference was reversed completely to the level of rats receiving cocaine paired with alpha-helical CRF. This reversal of cocaine preference was also paralleled by a reversal in CRF-induced increase of p38 MAPK expression in the nucleus accumbens shell. These findings suggest that social interaction could contribute as a valuable component in treatment of substance use disorders by reducing stress levels.


Asunto(s)
Recompensa , Interacción Social , Estrés Psicológico/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Cocaína/farmacología , Condicionamiento Clásico/efectos de los fármacos , Hormona Liberadora de Corticotropina/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Masculino , Núcleo Accumbens/efectos de los fármacos , Ratas , Receptores de Hormona Liberadora de Corticotropina/metabolismo
15.
FASEB J ; 35(2): e21195, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33200466

RESUMEN

Microglia, the key neuroimmune cells of the central nervous system, are best known for their function in defending an individual from pathogens and injury. Recent findings, including our own, suggest microglia also have several immune-independent roles, including in regulating satiety, promoting memory, and modifying pain responses. Many of these microglia-associated functions are affected by circadian rhythmicity, thus, varying substantially depending upon the time of day. To gain further insight into this link, we used a Cx3cr1-Dtr transgenic Wistar rat model to acutely deplete microglia and examined if this could lead to a disruption in diurnal temperature, metabolism, and activity measures. We also examined if differences in the physiological rhythms corresponded with changes in the expression of key circadian rhythm-regulating genes and proteins. Our data show that in the absence of microglia there is a pronounced disruption of diurnal rhythms in several domains consistent with a shift toward the inactive phase, in conjunction with changes in circadian rhythm-regulating genes and proteins. These data suggest microglia are involved in the regulation of circadian rhythms and indicate an exciting potential to manipulate these cells to improve disrupted circadian rhythms such as with shift-work or jet-lag.


Asunto(s)
Ciclos de Actividad , Ritmo Circadiano , Microglía/metabolismo , Animales , Temperatura Corporal , Encéfalo/citología , Encéfalo/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Masculino , Movimiento , Ratas , Ratas Wistar
16.
Brain Behav ; 11(1): e01914, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33300668

RESUMEN

BACKGROUND: Meditation is increasingly attracting interest among neuroimaging researchers for its relevance as a cognitive enhancement technique and several cross-sectional studies have indicated cerebral changes. This longitudinal study applied a distinct and standardized meditative technique with a group of volunteers in a short-term training program to analyze brain metabolic changes. METHODS: The effect of 7 weeks of meditation exercises (focused attention meditation, FAM) was assessed on 27 healthy volunteers. Changes in cerebral energy metabolism were investigated using 31 P-MR spectroscopy. Metabolite ratios were compared before (T1) and after training (T2). Additional questionnaire assessments were included. RESULTS: The participants performed FAM daily. Depression and anxiety scores revealed a lower level of state anxiety at T2 compared to T1. From T1 to T2, energy metabolism ratios showed the following differences: PCr/ATP increased right occipitally; Pi/ATP decreased bilaterally in the basal ganglia and temporal lobe on the right; PCr/Pi increased in occipital lobe bilaterally, in the basal ganglia and in the temporal lobe on the right side. The pH decreased temporal on the left side and frontal in the right side. The observed changes in the temporal areas and basal ganglia may be interpreted as a higher energetic state, whereas the frontal and occipital areas showed changes that may be related to a down-regulation in ATP turnover, energy state, and oxidative capacity. CONCLUSIONS: The results of the current study indicate for the first time in a longitudinal study that even short-term training in FAM may have considerable effects on brain energy state with different local energy management in specific brain regions. Especially higher energetic state in basal ganglia may represent altered function in their central role in complex cerebral distributed networks including frontal and temporal areas. Further studies including different forms of relaxation techniques should be performed for more specific and reliable insights.


Asunto(s)
Meditación , Encéfalo/diagnóstico por imagen , Estudios Transversales , Metabolismo Energético , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Proyectos Piloto
17.
Front Synaptic Neurosci ; 12: 594484, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192444

RESUMEN

Ghrelin is a peptide hormone released by specialized X/A cells in the stomach and activated by acylation. Following its secretion, it binds to ghrelin receptors in the periphery to regulate energy balance, but it also acts on the central nervous system where it induces a potent orexigenic effect. Several types of stressors have been shown to stimulate ghrelin release in rodents, including nutritional stressors like food deprivation, but also physical and psychological stressors such as foot shocks, social defeat, forced immobilization or chronic unpredictable mild stress. The mechanism through which these stressors drive ghrelin release from the stomach lining remains unknown and, to date, the resulting consequences of ghrelin release for stress coping remain poorly understood. Indeed, ghrelin has been proposed to act as a stress hormone that reduces fear, anxiety- and depression-like behaviors in rodents but some studies suggest that ghrelin may - in contrast - promote such behaviors. In this review, we aim to provide a comprehensive overview of the literature on the role of the ghrelin system in stress coping. We discuss whether ghrelin release is more than a byproduct of disrupted energy homeostasis following stress exposure. Furthermore, we explore the notion that ghrelin receptor signaling in the brain may have effects independent of circulating ghrelin and in what way this might influence stress coping in rodents. Finally, we examine how the ghrelin system could be utilized as a therapeutic avenue in stress-related psychiatric disorders (with a focus on anxiety- and trauma-related disorders), for example to develop novel biomarkers for a better diagnosis or new interventions to tackle relapse or treatment resistance in patients.

18.
Elife ; 92020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33074102

RESUMEN

Bioimage analysis of fluorescent labels is widely used in the life sciences. Recent advances in deep learning (DL) allow automating time-consuming manual image analysis processes based on annotated training data. However, manual annotation of fluorescent features with a low signal-to-noise ratio is somewhat subjective. Training DL models on subjective annotations may be instable or yield biased models. In turn, these models may be unable to reliably detect biological effects. An analysis pipeline integrating data annotation, ground truth estimation, and model training can mitigate this risk. To evaluate this integrated process, we compared different DL-based analysis approaches. With data from two model organisms (mice, zebrafish) and five laboratories, we show that ground truth estimation from multiple human annotators helps to establish objectivity in fluorescent feature annotations. Furthermore, ensembles of multiple models trained on the estimated ground truth establish reliability and validity. Our research provides guidelines for reproducible DL-based bioimage analyses.


Research in biology generates many image datasets, mostly from microscopy. These images have to be analyzed, and much of this analysis relies on a human expert looking at the images and manually annotating features. Image datasets are often large, and human annotation can be subjective, so automating image analysis is highly desirable. This is where machine learning algorithms, such as deep learning, have proven to be useful. In order for deep learning algorithms to work first they have to be 'trained'. Deep learning algorithms are trained by being given a training dataset that has been annotated by human experts. The algorithms extract the relevant features to look out for from this training dataset and can then look for these features in other image data. However, it is also worth noting that because these models try to mimic the annotation behavior presented to them during training as well as possible, they can sometimes also mimic an expert's subjectivity when annotating data. Segebarth, Griebel et al. asked whether this was the case, whether it had an impact on the outcome of the image data analysis, and whether it was possible to avoid this problem when using deep learning for imaging dataset analysis. For this research, Segebarth, Griebel et al. used microscopy images of mouse brain sections, where a protein called cFOS had been labeled with a fluorescent tag. This protein typically controls the rate at which DNA information is copied into RNA, leading to the production of proteins. Its activity can be influenced experimentally by testing the behaviors of mice. Thus, this experimental manipulation can be used to evaluate the results of deep learning-based image analyses. First, the fluorescent images were interpreted manually by a group of human experts. Then, their results were used to train a large variety of deep learning models. Models were trained either on the results of an individual expert or on the results pooled from all experts to come up with a consensus model, a deep learning model that learned from the personal annotation preferences of all experts. This made it possible to test whether training a model on multiple experts reduces the risk of subjectivity. As the training of deep learning models is random, Segebarth, Griebel et al. also tested whether combining the predictions from multiple models in a so-called model ensemble improves the consistency of the analyses. For evaluation, the annotations of the deep learning models were compared to those of the human experts, to ensure that the results were not influenced by the subjective behavior of one person. The results of all bioimage annotations were finally compared to the experimental results from analyzing the mice's behaviors in order to check whether the models were able to find the behavioral effect on cFOS. Segebarth, Griebel et al. concluded that combining the expert knowledge of multiple experts reduces the subjectivity of bioimage annotation by deep learning algorithms. Combining such consensus information in a group of deep learning models improves the quality of bioimage analysis, so that the results are reliable, transparent and less subjective.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Animales , Aprendizaje Profundo , Miedo , Colorantes Fluorescentes , Masculino , Ratones , Reproducibilidad de los Resultados , Relación Señal-Ruido , Pez Cebra
19.
Behav Brain Res ; 395: 112828, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32745662

RESUMEN

BACKGROUND: Based on the evidence that meditation is associated with numerous beneficial effects on well-being and reduced stress-related symptoms, mindfulness-based techniques were increasingly implemented into psychotherapeutic programs. However, different meditation styles and the cross-sectional nature of most previous analyses resulted in a great variety of morphometric findings. The present study aims to elucidate cortical reorganization processes and altered axonal integrity caused by short-term meditation training, and benefits from solely using focused attention meditation (FAM). METHODS: 3 T MRI, including T1-MPRAGE and diffusion-weighted sequences, was performed in 27 healthy, meditation naïve participants (age: 43 ± 12.4 years) pre and post FAM meditation training (duration: 7.3 ± 0.4 weeks). Voxel-based morphometry was applied to assess brain changes in gray and white matter. Questionnaires were filled out by the individuals at both time-points to evaluate quality of life and self-awareness deficits. RESULTS: The major findings comprised (i) gray matter increases in the insula, the caudate nucleus and frontal cortices, (ii) decreases in extended parietotemporal regions, the right medial prefrontal cortex and the parahippocampal gyrus, as well as (iii) fractional anisotropy increases of the right hippocampus, the basal ganglia and adjacent regions. Regression analysis revealed an association of specific alterations with reduced levels of state anxiety. CONCLUSIONS: FAM training induced a broad range of dynamic brain alterations even within few weeks of training. Interestingly, this cohort revealed more, and partially different patterns of structural gray matter change compared to prior studies. The broad impact on neuronal organization processes may reflect more general outcomes related to health and well-being.


Asunto(s)
Encéfalo/fisiología , Meditación/psicología , Plasticidad Neuronal/fisiología , Adulto , Atención/fisiología , Encéfalo/diagnóstico por imagen , Núcleo Caudado/fisiología , Corteza Cerebral/fisiología , Femenino , Sustancia Gris/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Meditación/métodos , Persona de Mediana Edad , Atención Plena , Corteza Prefrontal/fisiología , Calidad de Vida , Descanso/fisiología , Lóbulo Temporal/fisiología , Sustancia Blanca/fisiología
20.
Transl Psychiatry ; 10(1): 256, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732969

RESUMEN

High trait anxiety is a substantial risk factor for developing anxiety disorders and depression. While neuroinflammation has been identified to contribute to stress-induced anxiety, little is known about potential dysregulation in the neuroinflammatory system of genetically determined pathological anxiety or high trait anxiety individuals. We report microglial alterations in various brain regions in a mouse model of high trait anxiety (HAB). In particular, the dentate gyrus (DG) of the hippocampus of HABs exhibited enhanced density and average cell area of Iba1+, and density of phagocytic (CD68+/Iba1+) microglia compared to normal anxiety (NAB) controls. Minocycline was used to assess the capacity of a putative microglia 'inhibitor' in modulating hyperanxiety behavior of HABs. Chronic oral minocycline indeed reduced HAB hyperanxiety, which was associated with significant decreases in Iba1+ and CD68+Iba1+ cell densities in the DG. Addressing causality, it was demonstrated that longer (10 days), but not shorter (5 days), periods of minocycline microinfusions locally into the DG of HAB reduced Iba-1+ cell density and attenuated hyperanxiety-related behavior, indicating that neuroinflammation in the DG is at least partially involved in the maintenance of pathological anxiety. The present data reveal evidence of disturbances in the microglial system of individuals with high trait anxiety. Minocycline attenuated HAB hyperanxiety, likely by modulation of microglial activity within the DG. Thus, the present data suggest that drugs with microglia-targeted anti-inflammatory properties could be promising as novel alternative or complimentary anxiolytic therapeutic approaches in specific subgroups of individuals genetically predisposed to hyperanxiety.


Asunto(s)
Ansiolíticos , Minociclina , Animales , Ansiedad/tratamiento farmacológico , Trastornos de Ansiedad/tratamiento farmacológico , Ratones , Microglía , Minociclina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA