Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
J Agric Food Chem ; 72(6): 2835-2852, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38315814

RESUMEN

This comprehensive review explores the emerging landscape of Nano-QSAR (quantitative structure-activity relationship) for assessing the risk and potency of nanomaterials in agricultural settings. The paper begins with an introduction to Nano-QSAR, providing background and rationale, and explicitly states the hypotheses guiding the review. The study navigates through various dimensions of nanomaterial applications in agriculture, encompassing their diverse properties, types, and associated challenges. Delving into the principles of QSAR in nanotoxicology, this article elucidates its application in evaluating the safety of nanomaterials, while addressing the unique limitations posed by these materials. The narrative then transitions to the progression of Nano-QSAR in the context of agricultural nanomaterials, exemplified by insightful case studies that highlight both the strengths and the limitations inherent in this methodology. Emerging prospects and hurdles tied to Nano-QSAR in agriculture are rigorously examined, casting light on important pathways forward, existing constraints, and avenues for research enhancement. Culminating in a synthesis of key insights, the review underscores the significance of Nano-QSAR in shaping the future of nanoenabled agriculture. It provides strategic guidance to steer forthcoming research endeavors in this dynamic field.


Asunto(s)
Nanoestructuras , Relación Estructura-Actividad Cuantitativa , Nanoestructuras/toxicidad , Agricultura , Recompensa
3.
J Pers Med ; 13(12)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38138881

RESUMEN

To preserve male fertility after diagnosis of any kind of cancer, a prompt assessment of the semen quality and an appropriate semen cryopreservation must be performed before radio-chemotherapy starts. The present work aims to evaluate the semen parameters at diagnosis of different cancer patients before cryopreservation and after thawing. Testicular tumors and lymphomas are among the most common cancers in younger patients, and while chemotherapy significantly increases patients' survival, it can epigenetically alter the semen fluid, resulting in temporary or permanent infertility. We analyzed data from the database of the Gamete Cryopreservation Center (Annunziata Hospital, CS; Italy) in the period of 2011-2020 from a cohort of 254 cancer patients aged 18-56 years. The evaluation was performed in a blind manner and anonymously recovered; the main parameters referring to semen quality were assessed in accordance with the WHO guidelines and decision limits (6th edition; 2021). The cancer types were as follows: testis cancers (TC; n = 135; 53.1%), hematological cancers (HC; n = 76; 29.9%), and other types of cancer (OC; n = 43; 17%). Comparing TC vs. HC (P1) and vs. OC (P2), TC had the worst semen quality: sperm number/mL (P1 = 0.0014; P2 = 0.004), total motility (P1 = 0.02; P2 = 0.07), progressive motility (P1 = 0.04; P2 = 0.05), viability (P1 = 0.01; P2 = 0.02), and percentage of atypical morphology (P1 = 0.05; P2 = 0.03). After semen thawing, viability and progressive motility recovery lowered, accounting for 46.82% and 16.75%, respectively, in the whole cohort; similarly, in the subgroups ascribed to TC, they showed the lowest recovery. Strong correlation existed between pre- and post-cryopreservation viability and progressive motility in the whole cohort (p < 0.001) and in the TC subgroup (p < 0.05). All cancer subgroups, to significantly different extents, had semen findings below the WHO reference values, suggesting diverse sperm susceptibilities to different cancers and cryodamage. Cancer and associated treatments epigenetically affect patients' semen quality, meaning cryopreservation should be considered a useful personalized prerogative for any kind of cancer in a timely manner.

4.
Hum Genomics ; 17(1): 112, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098073

RESUMEN

BACKGROUND: Sudden sensorineural hearing loss (SSNHL) is an abrupt loss of hearing, still idiopathic in most of cases. Several mechanisms have been proposed including genetic and epigenetic interrelationships also considering iron homeostasis genes, ferroptosis and cellular stressors such as iron excess and dysfunctional mitochondrial superoxide dismutase activity. RESULTS: We investigated 206 SSNHL patients and 420 healthy controls for the following genetic variants in the iron pathway: SLC40A1 - 8CG (ferroportin; FPN1), HAMP - 582AG (hepcidin; HEPC), HFE C282Y and H63D (homeostatic iron regulator), TF P570S (transferrin) and SOD2 A16V in the mitochondrial superoxide dismutase-2 gene. Among patients, SLC40A1 - 8GG homozygotes were overrepresented (8.25% vs 2.62%; P = 0.0015) as well SOD2 16VV genotype (32.0% vs 24.3%; P = 0.037) accounting for increased SSNHL risk (OR = 3.34; 1.54-7.29 and OR = 1.47; 1.02-2.12, respectively). Moreover, LINE-1 methylation was inversely related (r2 = 0.042; P = 0.001) with hearing loss score assessed as pure tone average (PTA, dB HL), and the trend was maintained after SLC40A1 - 8CG and HAMP - 582AG genotype stratification (ΔSLC40A1 = + 8.99 dB HL and ΔHAMP = - 6.07 dB HL). In multivariate investigations, principal component analysis (PCA) yielded PC1 (PTA, age, LINE-1, HAMP, SLC40A1) and PC2 (sex, HFEC282Y, SOD2, HAMP) among the five generated PCs, and logistic regression analysis ascribed to PC1 an inverse association with moderate/severe/profound HL (OR = 0.60; 0.42-0.86; P = 0.0006) and with severe/profound HL (OR = 0.52; 0.35-0.76; P = 0.001). CONCLUSION: Recognizing genetic and epigenetic biomarkers and their mutual interactions in SSNHL is of great value and can help pharmacy science to design by pharmacogenomic data classical or advanced molecules, such as epidrugs, to target new pathways for a better prognosis and treatment of SSNHL.


Asunto(s)
Pérdida Auditiva Sensorineural , Pérdida Auditiva Súbita , Humanos , Metilación de ADN , Hierro/metabolismo , Hierro/uso terapéutico , Transferrina/genética , Transferrina/metabolismo , Transferrina/uso terapéutico , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Súbita/tratamiento farmacológico , Pérdida Auditiva Súbita/genética , Homeostasis/genética
5.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37686073

RESUMEN

Myocardial infarction (MI) is one of the leading causes of death in Western countries. An early diagnosis decreases subsequent severe complications such as wall remodeling or heart failure and improves treatments and interventions. Novel therapeutic targets have been recognized and, together with the development of direct and indirect epidrugs, the role of non-coding RNAs (ncRNAs) yields great expectancy. ncRNAs are a group of RNAs not translated into a product and, among them, microRNAs (miRNAs) are the most investigated subgroup since they are involved in several pathological processes related to MI and post-MI phases such as inflammation, apoptosis, angiogenesis, and fibrosis. These processes and pathways are finely tuned by miRNAs via complex mechanisms. We are at the beginning of the investigation and the main paths are still underexplored. In this review, we provide a comprehensive discussion of the recent findings on epigenetic changes involved in the first phases after MI as well as on the role of the several miRNAs. We focused on miRNAs function and on their relationship with key molecules and cells involved in healing processes after an ischemic accident, while also giving insight into the discrepancy between males and females in the prognosis of cardiovascular diseases.


Asunto(s)
MicroARNs , Infarto del Miocardio , Femenino , Masculino , Humanos , MicroARNs/genética , Infarto del Miocardio/genética , Apoptosis , Epigénesis Genética , Epigenómica
6.
Curr Res Toxicol ; 5: 100118, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37609475

RESUMEN

Herbal medications have an extensive history of use in treating various diseases, attributed to their perceived efficacy and safety. Traditional medicine practitioners and contemporary healthcare providers have shown particular interest in herbal syrups, especially for respiratory illnesses associated with the SARS-CoV-2 virus. However, the current understanding of the pharmacokinetic and toxicological properties of phytochemicals in these herbal mixtures is limited. This study presents a comprehensive computational analysis utilizing novel approach methodologies (NAMs) to investigate the pharmacokinetic and toxicological profiles of phytochemicals in herbal syrup, leveraging in-silico techniques and prediction tools such as PubChem, SwissADME, and Molsoft's database. Although molecular dynamics, docking, and broader system-wide analyses were not considered, future studies hold potential for further investigation in these areas. By combining drug-likeness with molecular simulation, researchers identify diverse phytochemicals suitable for complex medication development examining their pharmacokinetic-toxicological profiles in phytopharmaceutical syrup. The study focuses on herbal solutions for respiratory infections, with the goal of adding to the pool of all-natural treatments for such ailments. This research has the potential to revolutionize environmental and alternative medicine by leveraging in-silico models and innovative analytical techniques to identify novel phytochemicals with enhanced therapeutic benefits and explore network-based and systems biology approaches for a deeper understanding of their interactions with biological systems. Overall, our study offers valuable insights into the computational analysis of the pharmacokinetic and toxicological profiles of herbal concoction. This paves the way for advancements in environmental and alternative medicine. However, we acknowledge the need for future studies to address the aforementioned topics that were not adequately covered in this research.

7.
Biomed Mater Devices ; : 1-12, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37363137

RESUMEN

Recent advances in the orthopedic prostheses design have significantly improved the quality of life for individuals with orthopedic disabilities. However, there are still critical challenges that need to be addressed to further enhance the functionality of orthopedic prostheses improving biocompatibility to promote better integration with natural tissues, enhancing durability to withstand the demands of daily use, and improving sensory feedback for better control of movement are the most pressing issues. To address these challenges, promising emerging solutions such as smart prosthetics, 3D printing, regenerative medicine, and artificial intelligence have been developed. These innovative technologies hold the potential to significantly enhance the functionality of orthopedic prostheses. Realizing the full potential of these next-generation orthopedic prostheses requires addressing several critical factors. These include interdisciplinary collaboration between experts in orthopedics, materials science, biology, and engineering, increased investment in research and development, standardization of components to ensure quality and reliability, and improved access to prosthetics. A comprehensive review of these challenges and considerations for future orthopedic prosthesis design is s provided in this paper addressing the further advances to the field. By addressing these issues, we can continue to improve the lives of individuals with orthopedic disabilities and further enhance the field of orthopedic prosthetics.

8.
ACS Omega ; 8(24): 21377-21390, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37360489

RESUMEN

Toxicology is undergoing a digital revolution, with mobile apps, sensors, artificial intelligence (AI), and machine learning enabling better record-keeping, data analysis, and risk assessment. Additionally, computational toxicology and digital risk assessment have led to more accurate predictions of chemical hazards, reducing the burden of laboratory studies. Blockchain technology is emerging as a promising approach to increase transparency, particularly in the management and processing of genomic data related with food safety. Robotics, smart agriculture, and smart food and feedstock offer new opportunities for collecting, analyzing, and evaluating data, while wearable devices can predict toxicity and monitor health-related issues. The review article focuses on the potential of digital technologies to improve risk assessment and public health in the field of toxicology. By examining key topics such as blockchain technology, smoking toxicology, wearable sensors, and food security, this article provides an overview of how digitalization is influencing toxicology. As well as highlighting future directions for research, this article demonstrates how emerging technologies can enhance risk assessment communication and efficiency. The integration of digital technologies has revolutionized toxicology and has great potential for improving risk assessment and promoting public health.

9.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047125

RESUMEN

Various biological processes involve the translocation of macromolecules across nanopores; these pores are basically protein channels embedded in membranes. Understanding the mechanism of translocation is crucial to a range of technological applications, including DNA sequencing, single molecule detection, and controlled drug delivery. In this spirit, numerous efforts have been made to develop polymer translocation-based sequencing devices, these efforts include findings and insights from theoretical modeling, simulations, and experimental studies. As much as the past and ongoing studies have added to the knowledge, the practical realization of low-cost, high-throughput sequencing devices, however, has still not been realized. There are challenges, the foremost of which is controlling the speed of translocation at the single monomer level, which remain to be addressed in order to use polymer translocation-based methods for sensing applications. In this article, we review the recent studies aimed at developing control over the dynamics of polymer translocation through nanopores.


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Polímeros , Secuencia de Bases , Proteínas , Análisis de Secuencia de ADN/métodos
10.
Biomed Pharmacother ; 163: 114784, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37121152

RESUMEN

More information about a person's genetic makeup, drug response, multi-omics response, and genomic response is now available leading to a gradual shift towards personalized treatment. Additionally, the promotion of non-animal testing has fueled the computational toxicogenomics as a pivotal part of the next-gen risk assessment paradigm. Artificial Intelligence (AI) has the potential to provid new ways analyzing the patient data and making predictions about treatment outcomes or toxicity. As personalized medicine and toxicogenomics involve huge data processing, AI can expedite this process by providing powerful data processing, analysis, and interpretation algorithms. AI can process and integrate a multitude of data including genome data, patient records, clinical data and identify patterns to derive predictive models anticipating clinical outcomes and assessing the risk of any personalized medicine approaches. In this article, we have studied the current trends and future perspectives in personalized medicine & toxicology, the role of toxicogenomics in connecting the two fields, and the impact of AI on personalized medicine & toxicology. In this work, we also study the key challenges and limitations in personalized medicine, toxicogenomics, and AI in order to fully realize their potential.


Asunto(s)
Inteligencia Artificial , Medicina de Precisión , Humanos , Toxicogenética , Algoritmos , Tecnología
11.
Arch Toxicol ; 97(4): 963-979, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36878992

RESUMEN

The use of nanomaterials in medicine depends largely on nanotoxicological evaluation in order to ensure safe application on living organisms. Artificial intelligence (AI) and machine learning (MI) can be used to analyze and interpret large amounts of data in the field of toxicology, such as data from toxicological databases and high-content image-based screening data. Physiologically based pharmacokinetic (PBPK) models and nano-quantitative structure-activity relationship (QSAR) models can be used to predict the behavior and toxic effects of nanomaterials, respectively. PBPK and Nano-QSAR are prominent ML tool for harmful event analysis that is used to understand the mechanisms by which chemical compounds can cause toxic effects, while toxicogenomics is the study of the genetic basis of toxic responses in living organisms. Despite the potential of these methods, there are still many challenges and uncertainties that need to be addressed in the field. In this review, we provide an overview of artificial intelligence (AI) and machine learning (ML) techniques in nanomedicine and nanotoxicology to better understand the potential toxic effects of these materials at the nanoscale.


Asunto(s)
Inteligencia Artificial , Nanoestructuras , Nanomedicina , Aprendizaje Automático , Nanoestructuras/toxicidad
12.
Nanomicro Lett ; 15(1): 54, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36795339

RESUMEN

Agro seeds are vulnerable to environmental stressors, adversely affecting seed vigor, crop growth, and crop productivity. Different agrochemical-based seed treatments enhance seed germination, but they can also cause damage to the environment; therefore, sustainable technologies such as nano-based agrochemicals are urgently needed. Nanoagrochemicals can reduce the dose-dependent toxicity of seed treatment, thereby improving seed viability and ensuring the controlled release of nanoagrochemical active ingredients However, the applications of nanoagrochemicals to plants in the field raise concerns about nanomaterial safety, exposure levels, and toxicological implications to the environment and human health. In the present comprehensive review, the development, scope, challenges, and risk assessments of nanoagrochemicals on seed treatment are discussed. Moreover, the implementation obstacles for nanoagrochemicals use in seed treatments, their commercialization potential, and the need for policy regulations to assess possible risks are also discussed. Based on our knowledge, this is the first time that we have presented legendary literature to readers in order to help them gain a deeper understanding of upcoming nanotechnologies that may enable the development of future generation seed treatment agrochemical formulations, their scope, and potential risks associated with seed treatment.

13.
Sci Total Environ ; 860: 160503, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36442637

RESUMEN

Severe acute respiratory syndrome coronavirus 2, abbreviated as SARS-CoV-2, has been associated with the transmission of infectious COVID-19 disease through breathing and speech droplets emitted by infected carriers including asymptomatic cases. As part of SARS-CoV-2 global pandemic preparedness, we studied the transmission of aerosolized air mimicking the infected person releasing speech aerosol with droplets containing CorNPs using a vibrating mesh nebulizer as human patient simulator. Generally speech produces nanoaerosols with droplets of <5 µm in diameter that can travel distances longer than 1 m after release. It is assumed that speech aerosol droplets are a main element of the current Corona virus pandemic, unlike droplets larger than 5 m, which settle down within a 1 m radius. There are no systemic studies, which take into account speech-generated aerosol/droplet experimental validation and their aerodynamics/particle kinetics analysis. In this study, we cover these topics and explore role of residual water in aerosol droplet stability by exploring drying dynamics. Furthermore, a candle experiment was designed to determine whether air pollution might influence respiratory virus like nanoparticle transmission and air stability.


Asunto(s)
COVID-19 , Nanopartículas , Humanos , SARS-CoV-2 , Saliva Artificial , Aerosoles y Gotitas Respiratorias
14.
Front Genet ; 13: 1028081, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531241

RESUMEN

Background: Development and worldwide availability of safe and effective vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to fight severe symptoms of coronavirus disease 2019 (COVID-19) and block the pandemic have been a great achievement and stimulated researchers on understanding the efficacy and duration of different vaccine types. Methods: We investigated the levels of anti-SARS-CoV-2 antibodies (IgG) and neutralizing antibodies (NAbs) in 195 healthy adult subjects belonging to the staff of the University-Hospital of Ferrara (Italy) starting from 15 days up to 190 days (about 6 months) after the second dose of the BNT162b2 (Pfizer-BioNTech) mRNA-based vaccine (n = 128) or ChAdOx1 (AstraZeneca) adenovirus-based vaccine (n = 67) using a combined approach of serological and genomics investigations. Results: A strong correlation between IgG and NAb levels was detected during the 190 days of follow-up (r 2 = 0.807; p < 0.0001) and was confirmed during the first 90 days (T1) after vaccination (r 2 = 0.789; p = 0.0001) and 91-190 days (T2) after vaccination (r 2 = 0.764; p = 0.0001) for both vaccine types (r 2 = 0.842; p = 0.0001 and r 2 = 0.780; p = 0.0001 for mRNA- and adenovirus-based vaccine, respectively). In addition to age (p < 0.01), sex (p = 0.03), and type of vaccine (p < 0.0001), which partially accounted for the remarkable individual differences observed in the antibody levels and dynamics, interesting genetic determinants appeared as significant modifiers of both IgG and NAb responses among the selected genes investigated (TP53, rs1042522; APOE, rs7412/rs429358; ABO, rs657152; ACE2, rs2285666; HLA-A rs2571381/rs2499; CRP, rs2808635/rs876538; LZTFL1, rs35044562; OAS3, rs10735079; SLC6A20, rs11385942; CFH, rs1061170; and ACE1, ins/del, rs4646994). In detail, regression analysis and mean antibody level comparison yielded appreciable differences after genotype stratification (P1 and P2, respectively, for IgG and NAb distribution) in the whole cohort and/or in the mRNA-based vaccine in the following genes: TP53, rs1042522 (P1 = 0.03; P2 = 0.04); ABO, rs657152 (P1 = 0.01; P2 = 0.03); APOE, rs7412/rs429358 (P1 = 0.0018; P2 = 0.0002); ACE2, rs2285666 (P1 = 0.014; P2 = 0.009); HLA-A, rs2571381/rs2499 (P1 = 0.02; P2 = 0.03); and CRP, rs2808635/rs876538 (P1 = 0.01 and P2 = 0.09). Conclusion: High- or low-responsive subjects can be identified among healthy adult vaccinated subjects after targeted genetic screening. This suggests that favorable genetic backgrounds may support the progression of an effective vaccine-induced immune response, though no definite conclusions can be drawn on the real effectiveness ascribed to a specific vaccine or to the different extent of a genotype-driven humoral response. The interplay between data from the polygenic predictive markers and serological screening stratified by demogeographic information can help to recognize the individual humoral response, accounting for ethnic and geographical differences, in both COVID-19 and anti-SARS-CoV-2 vaccinations.

15.
Cells ; 11(18)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36139383

RESUMEN

A hybrid blood-brain barrier (BBB)-on-chip cell culture device is proposed in this study by integrating microcontact printing and perfusion co-culture to facilitate the study of BBB function under high biological fidelity. This is achieved by crosslinking brain extracellular matrix (ECM) proteins to the transwell membrane at the luminal surface and adapting inlet-outlet perfusion on the porous transwell wall. While investigating the anatomical hallmarks of the BBB, tight junction proteins revealed tortuous zonula occludens (ZO-1), and claudin expressions with increased interdigitation in the presence of astrocytes were recorded. Enhanced adherent junctions were also observed. This junctional phenotype reflects in-vivo-like features related to the jamming of cell borders to prevent paracellular transport. Biochemical regulation of BBB function by astrocytes was noted by the transient intracellular calcium effluxes induced into endothelial cells. Geometry-force control of astrocyte-endothelial cell interactions was studied utilizing traction force microscopy (TFM) with fluorescent beads incorporated into a micropatterned polyacrylamide gel (PAG). We observed the directionality and enhanced magnitude in the traction forces in the presence of astrocytes. In the future, we envisage studying transendothelial electrical resistance (TEER) and the effect of chemomechanical stimulations on drug/ligand permeability and transport. The BBB-on-chip model presented in this proposal should serve as an in vitro surrogate to recapitulate the complexities of the native BBB cellular milieus.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Barrera Hematoencefálica/metabolismo , Calcio/metabolismo , Claudinas/metabolismo , Células Endoteliales/metabolismo , Ligandos , Neurofisiología , Proteínas de Uniones Estrechas/metabolismo
17.
Sci Rep ; 12(1): 14153, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986015

RESUMEN

Segmentation of abdominal Computed Tomography (CT) scan is essential for analyzing, diagnosing, and treating visceral organ diseases (e.g., hepatocellular carcinoma). This paper proposes a novel neural network (Res-PAC-UNet) that employs a fixed-width residual UNet backbone and Pyramid Atrous Convolutions, providing a low disk utilization method for precise liver CT segmentation. The proposed network is trained on medical segmentation decathlon dataset using a modified surface loss function. Additionally, we evaluate its quantitative and qualitative performance; the Res16-PAC-UNet achieves a Dice coefficient of 0.950 ± 0.019 with less than half a million parameters. Alternatively, the Res32-PAC-UNet obtains a Dice coefficient of 0.958 ± 0.015 with an acceptable parameter count of approximately 1.2 million.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Neoplasias Hepáticas , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X/métodos
18.
Micromachines (Basel) ; 13(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35888919

RESUMEN

DNA-mediated self-assembly of colloids has emerged as a powerful tool to assemble the materials of prescribed structure and properties. The uniqueness of the approach lies in the sequence-specific, thermo-reversible hybridization of the DNA-strands based on Watson-Crick base pairing. Grafting particles with DNA strands, thus, results into building blocks that are fully programmable, and can, in principle, be assembled into any desired structure. There are, however, impediments that hinder the DNA-grafted particles from realizing their full potential, as building blocks, for programmable self-assembly. In this short review, we focus on these challenges and highlight the research around tackling these challenges.

19.
Langmuir ; 38(26): 7976-7988, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35736838

RESUMEN

The severity of global pandemic due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has engaged the researchers and clinicians to find the key features triggering the viral infection to lung cells. By utilizing such crucial information, researchers and scientists try to combat the spread of the virus. Here, in this work, we performed in silico analysis of the protein-protein interactions between the receptor-binding domain (RBD) of the viral spike protein and the human angiotensin-converting enzyme 2 (hACE2) receptor to highlight the key alteration that happened from SARS-CoV to SARS-CoV-2. We analyzed and compared the molecular differences between spike proteins of the two viruses using various computational approaches such as binding affinity calculations, computational alanine, and molecular dynamics simulations. The binding affinity calculations showed that SARS-CoV-2 binds a little more firmly to the hACE2 receptor than SARS-CoV. The major finding obtained from molecular dynamics simulations was that the RBD-ACE2 interface is populated with water molecules and interacts strongly with both RBD and ACE2 interfacial residues during the simulation periods. The water-mediated hydrogen bond by the bridge water molecules is crucial for stabilizing the RBD and ACE2 domains. Near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) confirmed the presence of vapor and molecular water phases in the protein-protein interfacial domain, further validating the computationally predicted interfacial water molecules. In addition, we examined the role of interfacial water molecules in virus uptake by lung cell A549 by binding and maintaining the RBD/hACE2 complex at varying temperatures using nanourchins coated with spike proteins as pseudoviruses and fluorescence-activated cell sorting (FACS) as a quantitative approach. The structural and dynamical features presented here may serve as a guide for developing new drug molecules, vaccines, or antibodies to combat the COVID-19 pandemic.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Glicoproteína de la Espiga del Coronavirus , Agua , Células A549 , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virología , Humanos , Simulación de Dinámica Molecular , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Agua/química
20.
ACS Omega ; 7(16): 13985-13997, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35559161

RESUMEN

With the advent of Nanotechnology, the use of nanomaterials in consumer products is increasing on a daily basis, due to which a deep understanding and proper investigation regarding their safety and risk assessment should be a major priority. To date, there is no investigation regarding the microrheological properties of nanomaterials (NMs) in biological media. In our study, we utilized in silico models to select the suitable NMs based on their physicochemical properties such as solubility and lipophilicity. Then, we established a new method based on dynamic light scattering (DLS) microrheology to get the mean square displacement (MSD) and viscoelastic property of two model NMs that are dendrimers and cerium dioxide nanoparticles in Dulbecco's Modified Eagle Medium (DMEM) complete media at three different concentrations for both NMs. Subsequently, we established the cytotoxicological profiling using water-soluble tetrazolium salt-1 (WST-1) and a reactive oxygen species (ROS) assay. To take one step forward, we further looked into the tight junction properties of the cells using immunostaining with Zonula occluden-1 (ZO-1) antibodies and found that the tight junction function or transepithelial resistance (TEER) was affected in response to the microrheology and cytotoxicity. The quantitative polymerase chain reaction (q-PCR) results in the gene expression of ZO-1 after the 24 h treatment with NPs further validates the findings of immunostaining results. This new method that we established will be a reference point for other NM studies which are used in our day-to-day consumer products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA