Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 8(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692017

RESUMEN

The expression of indoleamine 2,3-dioxygenase (IDO), a robust immunosuppressant, is significantly induced in macaque tuberculosis (TB) granulomas, where it is expressed on IFN-responsive macrophages and myeloid-derived suppressor cells. IDO expression is also highly induced in human TB granulomas, and products of its activity are detected in patients with TB. In vivo blockade of IDO activity resulted in the reorganization of the granuloma with substantially greater T cells being recruited to the core of the lesions. This correlated with better immune control of TB and reduced lung M. tuberculosis burdens. To study if the IDO blockade strategy can be translated to a bona fide host-directed therapy in the clinical setting of TB, we studied the effect of IDO inhibitor 1-methyl-d-tryptophan adjunctive to suboptimal anti-TB chemotherapy. While two-thirds of controls and one-third of chemotherapy-treated animals progressed to active TB, inhibition of IDO adjunctive to the same therapy protected macaques from TB, as measured by clinical, radiological, and microbiological attributes. Although chemotherapy improved proliferative T cell responses, adjunctive inhibition of IDO further enhanced the recruitment of effector T cells to the lung. These results strongly suggest the possibility that IDO inhibition can be attempted adjunctive to anti-TB chemotherapy in clinical trials.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Animales , Humanos , Granuloma , Indolamina-Pirrol 2,3,-Dioxigenasa , Macrófagos/metabolismo , Mycobacterium tuberculosis/metabolismo
2.
Front Immunol ; 13: 777733, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275677

RESUMEN

Mycobacterium tuberculosis (Mtb) has developed specialized mechanisms to parasitize its host cell, the macrophage. These mechanisms allow it to overcome killing by oxidative burst and persist in the wake of an inflammatory response. Mtb infection in the majority of those exposed is controlled in an asymptomatic form referred to as latent tuberculosis infection (LTBI). HIV is a well-known catalyst of reactivation of LTBI to active TB infection (ATB). Through the use of nonhuman primates (NHPs) co-infected with Mtb and Simian Immunodeficiency Virus (Mtb/SIV), we are able to simulate human progression of TB/AIDS comorbidity. The advantage of NHP models is that they recapitulate the breadth of human TB outcomes, including immune control of infection, and loss of this control due to SIV co-infection. Identifying correlates of immune control of infection is important for both vaccine and therapeutics development. Using macaques infected with Mtb or Mtb/SIV and with different clinical outcomes we attempted to identify signatures between those that progress to active infection after SIV challenge (reactivators) and those that control the infection (non-reactivators). We particularly focused on pathways relevant to myeloid origin cells such as macrophages, as these innate immunocytes have an important contribution to the initial control or the lack thereof, following Mtb infection. Using bacterial burden, C-reactive protein (CRP), and other clinical indicators of disease severity as a guide, we were able to establish gene signatures of host disease state and progression. In addition to gene signatures, clustering algorithms were used to differentiate between host disease states and identify relationships between genes. This allowed us to identify clusters of genes which exhibited differential expression profiles between the three groups of macaques: ATB, LTBI and Mtb/SIV. The gene signatures were associated with pathways relevant to apoptosis, ATP production, phagocytosis, cell migration, and Type I interferon (IFN), which are related to macrophage function. Our results suggest novel macrophage functions that may play roles in the control of Mtb infection with and without co-infection with SIV. These results particularly point towards an interplay between Type I IFN signaling and IFN-γ signaling, and the resulting impact on lung macrophages as an important determinant of progression to TB.


Asunto(s)
Coinfección , Infecciones por VIH , Interferón Tipo I , Tuberculosis Latente , Infecciones por Lentivirus , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Macaca , Proteína C-Reactiva , Biomarcadores , Infecciones por VIH/complicaciones , Adenosina Trifosfato
3.
Methods Mol Biol ; 2452: 227-258, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35554911

RESUMEN

With the advent of the novel SARS-CoV-2, the entire world has been thrown into chaos with severe disruptions from a normal life. While the entire world was going chaotic, the researchers throughout the world were struggling to contribute to the best of their capabilities to advance the understanding of this new pandemic and fast track the development of novel therapeutics and vaccines. While various animal models have helped a lot to understand the basic physiology, nonhman primates have been promising and much more successful in modelling human diseases compared to other available clinical models. Here we describe the different aspects of modelling the SARS-CoV-2 infection in NHPs along with the associated methods used in NHP immunology.


Asunto(s)
COVID-19 , Animales , Modelos Animales de Enfermedad , Pandemias , Primates , SARS-CoV-2
4.
Nat Commun ; 13(1): 679, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115549

RESUMEN

Emergence of mutant SARS-CoV-2 strains associated with an increased risk of COVID-19-related death necessitates better understanding of the early viral dynamics, host responses and immunopathology. Single cell RNAseq (scRNAseq) allows for the study of individual cells, uncovering heterogeneous and variable responses to environment, infection and inflammation. While studies have reported immune profiling using scRNAseq in terminal human COVID-19 patients, performing longitudinal immune cell dynamics in humans is challenging. Macaques are a suitable model of SARS-CoV-2 infection. Our longitudinal scRNAseq of bronchoalveolar lavage (BAL) cell suspensions from young rhesus macaques infected with SARS-CoV-2 (n = 6) demonstrates dynamic changes in transcriptional landscape 3 days post- SARS-CoV-2-infection (3dpi; peak viremia), relative to 14-17dpi (recovery phase) and pre-infection (baseline) showing accumulation of distinct populations of both macrophages and T-lymphocytes expressing strong interferon-driven inflammatory gene signature at 3dpi. Type I interferon response is induced in the plasmacytoid dendritic cells with appearance of a distinct HLADR+CD68+CD163+SIGLEC1+ macrophage population exhibiting higher angiotensin-converting enzyme 2 (ACE2) expression. These macrophages are significantly enriched in the lungs of macaques at 3dpi and harbor SARS-CoV-2 while expressing a strong interferon-driven innate anti-viral gene signature. The accumulation of these responses correlated with decline in viremia and recovery.


Asunto(s)
COVID-19/inmunología , Interferones/farmacología , Células Mieloides/inmunología , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales , Lavado Broncoalveolar , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Inflamación , Interferón Tipo I/genética , Interferón Tipo I/farmacología , Interferones/genética , Pulmón/inmunología , Pulmón/patología , Macaca mulatta , Macrófagos/inmunología , Linfocitos T/inmunología
5.
J Clin Invest ; 132(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34855621

RESUMEN

Studies using the nonhuman primate model of Mycobacterium tuberculosis/simian immunodeficiency virus coinfection have revealed protective CD4+ T cell-independent immune responses that suppress latent tuberculosis infection (LTBI) reactivation. In particular, chronic immune activation rather than the mere depletion of CD4+ T cells correlates with reactivation due to SIV coinfection. Here, we administered combinatorial antiretroviral therapy (cART) 2 weeks after SIV coinfection to study whether restoration of CD4+ T cell immunity occurred more broadly, and whether this prevented reactivation of LTBI compared to cART initiated 4 weeks after SIV. Earlier initiation of cART enhanced survival, led to better control of viral replication, and reduced immune activation in the periphery and lung vasculature, thereby reducing the rate of SIV-induced reactivation. We observed robust CD8+ T effector memory responses and significantly reduced macrophage turnover in the lung tissue. However, skewed CD4+ T effector memory responses persisted and new TB lesions formed after SIV coinfection. Thus, reactivation of LTBI is governed by very early events of SIV infection. Timing of cART is critical in mitigating chronic immune activation. The potential novelty of these findings mainly relates to the development of a robust animal model of human M. tuberculosis/HIV coinfection that allows the testing of underlying mechanisms.


Asunto(s)
Antirretrovirales/farmacología , Coinfección , Tuberculosis Latente/metabolismo , Mycobacterium tuberculosis/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios/metabolismo , Animales , Coinfección/tratamiento farmacológico , Coinfección/metabolismo , Coinfección/microbiología , Coinfección/virología , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/microbiología
6.
mBio ; 12(6): e0318921, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34903057

RESUMEN

Myeloid-derived suppressor cells (MDSCs) represent an innate immune cell population comprised of immature myeloid cells and myeloid progenitors with very potent immunosuppressive potential. MDSCs are reported to be abundant in the lungs of active tuberculosis (TB) patients. We sought to perform an in-depth study of MDSCs during latent TB infection (LTBI) and active TB (ATB) using the nonhuman primate (NHP) model of pulmonary TB. We found a higher proportion of granulocytic, polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in the lungs of ATB animals compared to those with LTBI or naive control animals. Active disease in the lung, but not LTBI, was furthermore associated with higher proliferation, expansion, and immunosuppressive capabilities of PMN-MDSCs, as shown by enhanced expression of Ki67, indoleamine 2,3-dioxygenase (IDO1), interleukin-10 (IL-10), matrix metallopeptidase 9 (MMP-9), inducible nitric oxide synthase (iNOS), and programmed death-ligand 1 (PD-L1). These immunosuppressive PMN-MDSCs specifically localized to the lymphocytic cuff at the periphery of the granulomas in animals with ATB. Conversely, these cells were scarcely distributed in interstitial lung tissue and the inner core of granulomas. This spatial regulation suggests an important immunomodulatory role of PMN-MDSCs by restricting T cell access to the TB granuloma core and can potentially explain dysfunctional anti-TB responses in active granuloma. Our results raise the possibility that the presence of MDSCs can serve as a biomarker for ATB, while their disappearance can indicate successful therapy. Furthermore, MDSCs may serve as a potential target cell for adjunctive TB therapy. IMPORTANCE Myeloid cells are immunocytes of innate origin that orchestrate the first response toward pathogens via immune surveillance (uptake and killing), antigen presentation, and initiation of adaptive immunity by T cell stimulation. However, MDSCs are a subset of innate immunocytes that deviate to an immunoregulatory phenotype. MDSCs possess strong immunosuppressive capabilities that are induced in autoimmune, malignant neoplastic, and chronic inflammatory diseases. Induction of MDSCs has been found in peripheral blood, bronchoalveolar lavage (BAL) fluid, and pleural effusions of active TB patients, but their precise localization in lung tissue and in TB granulomas remains unclear due to challenges associated with sampling lungs and granulomas from active TB patients. Nonhuman primates (NHPs) are an important animal model with TB granulomas that closely mimic those found in humans and can therefore be used for studies that are otherwise challenging with patient material. Herein, we study MDSC localization in the lungs of NHPs exhibiting latent and active TB. Our findings reveal that MDSCs localize and exert their immunosuppressive roles at the periphery rather than in the core of TB granulomas.


Asunto(s)
Granuloma/inmunología , Tuberculosis Latente/inmunología , Células Supresoras de Origen Mieloide/inmunología , Linfocitos T/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Modelos Animales de Enfermedad , Femenino , Granuloma/microbiología , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Tuberculosis Latente/genética , Tuberculosis Latente/microbiología , Macaca mulatta , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/inmunología , Mycobacterium tuberculosis/fisiología , Tuberculosis Pulmonar/genética , Tuberculosis Pulmonar/microbiología
7.
Res Sq ; 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34282414

RESUMEN

The emergence of mutant SARS-CoV-2 strains associated with an increased risk of COVID-19-related death necessitates better understanding of the early viral dynamics, host responses and immunopathology. While studies have reported immune profiling using single cell RNA sequencing in terminal human COVID-19 patients, performing longitudinal immune cell dynamics in humans is challenging. Macaques are a suitable model of SARS-CoV-2 infection. We performed longitudinal single-cell RNA sequencing of bronchoalveolar lavage (BAL) cell suspensions from adult rhesus macaques infected with SARS-CoV-2 (n=6) to delineate the early dynamics of immune cells changes. The bronchoalveolar compartment exhibited dynamic changes in transcriptional landscape 3 days post- SARS-CoV-2-infection (3dpi) (peak viremia), relative to 14-17dpi (recovery phase) and pre-infection (baseline). We observed the accumulation of distinct populations of both macrophages and T-lymphocytes expressing strong interferon-driven inflammatory gene signature at 3dpi. Type I IFN response was highly induced in the plasmacytoid dendritic cells. The presence of a distinct HLADR+CD68+CD163+SIGLEC1+ macrophage population exhibiting higher angiotensin converting enzyme 2 (ACE2) expression was also observed. These macrophages were significantly recruited to the lungs of macaques at 3dpi and harbored SARS-CoV-2, while expressing a strong interferon-driven innate anti-viral gene signature. The accumulation of these responses correlated with decline in viremia and recovery. The recruitment of a myeloid cell-mediated Type I IFN response is associated with the rapid clearance of SARS-CoV-2 infection in macaques.

8.
Cell ; 184(7): 1757-1774.e14, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33761328

RESUMEN

The central pathogen-immune interface in tuberculosis is the granuloma, a complex host immune structure that dictates infection trajectory and physiology. Granuloma macrophages undergo a dramatic transition in which entire epithelial modules are induced and define granuloma architecture. In tuberculosis, relatively little is known about the host signals that trigger this transition. Using the zebrafish-Mycobacterium marinum model, we identify the basis of granuloma macrophage transformation. Single-cell RNA-sequencing analysis of zebrafish granulomas and analysis of Mycobacterium tuberculosis-infected macaques reveal that, even in the presence of robust type 1 immune responses, countervailing type 2 signals associate with macrophage epithelialization. We find that type 2 immune signaling, mediated via stat6, is absolutely required for epithelialization and granuloma formation. In mixed chimeras, stat6 acts cell autonomously within macrophages, where it is required for epithelioid transformation and incorporation into necrotic granulomas. These findings establish the signaling pathway that produces the hallmark structure of mycobacterial infection.


Asunto(s)
Granuloma/patología , Inmunidad/fisiología , Infecciones por Mycobacterium no Tuberculosas/patología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Diferenciación Celular , Modelos Animales de Enfermedad , Células Epitelioides/citología , Células Epitelioides/inmunología , Células Epitelioides/metabolismo , Granuloma/inmunología , Granuloma/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Interferón gamma/metabolismo , Interleucina-12/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Infecciones por Mycobacterium no Tuberculosas/inmunología , Mycobacterium marinum/aislamiento & purificación , Mycobacterium marinum/fisiología , Necrosis , ARN Guía de Kinetoplastida/metabolismo , Receptores de Interleucina-4/antagonistas & inhibidores , Receptores de Interleucina-4/genética , Receptores de Interleucina-4/metabolismo , Factor de Transcripción STAT6/antagonistas & inhibidores , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo , Transducción de Señal , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
9.
Commun Biol ; 4(1): 290, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674719

RESUMEN

SARS-CoV-2 virus has infected more than 92 million people worldwide resulting in the Coronavirus disease 2019 (COVID-19). Using a rhesus macaque model of SARS-CoV-2 infection, we have characterized the transcriptional signatures induced in the lungs of juvenile and old macaques following infection. Genes associated with Interferon (IFN) signaling, neutrophil degranulation and innate immune pathways are significantly induced in macaque infected lungs, while pathways associated with collagen formation are downregulated, as also seen in lungs of macaques with tuberculosis. In COVID-19, increasing age is a significant risk factor for poor prognosis and increased mortality. Type I IFN and Notch signaling pathways are significantly upregulated in lungs of juvenile infected macaques when compared with old infected macaques. These results are corroborated with increased peripheral neutrophil counts and neutrophil lymphocyte ratio in older individuals with COVID-19 disease. Together, our transcriptomic studies have delineated disease pathways that improve our understanding of the immunopathogenesis of COVID-19.


Asunto(s)
COVID-19/inmunología , Degranulación de la Célula , Interferones/fisiología , Neutrófilos/fisiología , SARS-CoV-2 , Anciano , Animales , Antígenos CD36/fisiología , COVID-19/etiología , Colágeno/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Humanos , Pulmón/metabolismo , Macaca mulatta , Masculino , Persona de Mediana Edad , Receptores Notch/fisiología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/fisiología , Factor A de Crecimiento Endotelial Vascular/sangre , Factor A de Crecimiento Endotelial Vascular/fisiología
11.
Nat Microbiol ; 6(1): 73-86, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33340034

RESUMEN

Non-human primate models will expedite therapeutics and vaccines for coronavirus disease 2019 (COVID-19) to clinical trials. Here, we compare acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in young and old rhesus macaques, baboons and old marmosets. Macaques had clinical signs of viral infection, mild to moderate pneumonitis and extra-pulmonary pathologies, and both age groups recovered in two weeks. Baboons had prolonged viral RNA shedding and substantially more lung inflammation compared with macaques. Inflammation in bronchoalveolar lavage was increased in old versus young baboons. Using techniques including computed tomography imaging, immunophenotyping, and alveolar/peripheral cytokine response and immunohistochemical analyses, we delineated cellular immune responses to SARS-CoV-2 infection in macaque and baboon lungs, including innate and adaptive immune cells and a prominent type-I interferon response. Macaques developed T-cell memory phenotypes/responses and bystander cytokine production. Old macaques had lower titres of SARS-CoV-2-specific IgG antibody levels compared with young macaques. Acute respiratory distress in macaques and baboons recapitulates the progression of COVID-19 in humans, making them suitable as models to test vaccines and therapies.


Asunto(s)
COVID-19/veterinaria , Callithrix/inmunología , Pulmón/inmunología , Macaca mulatta/inmunología , Enfermedades de los Monos/virología , Papio/inmunología , SARS-CoV-2/inmunología , Inmunidad Adaptativa , Animales , Anticuerpos Antivirales/inmunología , Lavado Broncoalveolar , Líquido del Lavado Bronquioalveolar , COVID-19/diagnóstico por imagen , COVID-19/inmunología , COVID-19/patología , Femenino , Humanos , Inmunidad Celular/inmunología , Inmunoglobulina G/inmunología , Inflamación/patología , Pulmón/virología , Masculino , Enfermedades de los Monos/inmunología , Células Mieloides/inmunología , Carga Viral , Esparcimiento de Virus
12.
Cell Host Microbe ; 29(2): 165-178.e8, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33340449

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) latently infects approximately one-fourth of the world's population. The immune mechanisms that govern progression from latent (LTBI) to active pulmonary TB (PTB) remain poorly defined. Experimentally Mtb-infected non-human primates (NHP) mirror the disease observed in humans and recapitulate both PTB and LTBI. We characterized the lung immune landscape in NHPs with LTBI and PTB using high-throughput technologies. Three defining features of PTB in macaque lungs include the influx of plasmacytoid dendritic cells (pDCs), an Interferon (IFN)-responsive macrophage population, and activated T cell responses. In contrast, a CD27+ Natural killer (NK) cell subset accumulated in the lungs of LTBI macaques. This NK cell population was also detected in the circulation of LTBI individuals. This comprehensive analysis of the lung immune landscape will improve the understanding of TB immunopathogenesis, providing potential targets for therapies and vaccines for TB control.


Asunto(s)
Células Dendríticas/inmunología , Células Asesinas Naturales/inmunología , Tuberculosis Latente/inmunología , Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Humanos , Pulmón/citología , Pulmón/inmunología , Macaca mulatta , Tuberculosis Pulmonar/patología
13.
bioRxiv ; 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32793903

RESUMEN

The novel virus SARS-CoV-2 has infected more than 14 million people worldwide resulting in the Coronavirus disease 2019 (COVID-19). Limited information on the underlying immune mechanisms that drive disease or protection during COVID-19 severely hamper development of therapeutics and vaccines. Thus, the establishment of relevant animal models that mimic the pathobiology of the disease is urgent. Rhesus macaques infected with SARS-CoV-2 exhibit disease pathobiology similar to human COVID-19, thus serving as a relevant animal model. In the current study, we have characterized the transcriptional signatures induced in the lungs of juvenile and old rhesus macaques following SARS-CoV-2 infection. We show that genes associated with Interferon (IFN) signaling, neutrophil degranulation and innate immune pathways are significantly induced in macaque infected lungs, while pathways associated with collagen formation are downregulated. In COVID-19, increasing age is a significant risk factor for poor prognosis and increased mortality. We demonstrate that Type I IFN and Notch signaling pathways are significantly upregulated in lungs of juvenile infected macaques when compared with old infected macaques. These results are corroborated with increased peripheral neutrophil counts and neutrophil lymphocyte ratio in older individuals with COVID-19 disease. In contrast, pathways involving VEGF are downregulated in lungs of old infected macaques. Using samples from humans with SARS-CoV-2 infection and COVID-19, we validate a subset of our findings. Finally, neutrophil degranulation, innate immune system and IFN gamma signaling pathways are upregulated in both tuberculosis and COVID-19, two pulmonary diseases where neutrophils are associated with increased severity. Together, our transcriptomic studies have delineated disease pathways to improve our understanding of the immunopathogenesis of COVID-19 to facilitate the design of new therapeutics for COVID-19.

14.
J Clin Invest ; 130(10): 5171-5179, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32544085

RESUMEN

While the advent of combination antiretroviral therapy (ART) has significantly improved survival, tuberculosis (TB) remains the leading cause of death in the HIV-infected population. We used Mycobacterium tuberculosis/simian immunodeficiency virus-coinfected (M. tuberculosis/SIV-coinfected) macaques to model M. tuberculosis/HIV coinfection and study the impact of ART on TB reactivation due to HIV infection. Although ART significantly reduced viral loads and increased CD4+ T cell counts in blood and bronchoalveolar lavage (BAL) samples, it did not reduce the relative risk of SIV-induced TB reactivation in ART-treated macaques in the early phase of treatment. CD4+ T cells were poorly restored specifically in the lung interstitium, despite their significant restoration in the alveolar compartment of the lung as well as in the periphery. IDO1 induction in myeloid cells in the inducible bronchus-associated lymphoid tissue (iBALT) likely contributed to dysregulated T cell homing and impaired lung immunity. Thus, although ART was indispensable for controlling viral replication, restoring CD4+ T cells, and preventing opportunistic infection, it appeared inadequate in reversing the clinical signs of TB reactivation during the relatively short duration of ART administered in this study. This finding warrants the modeling of concurrent treatment of TB and HIV to potentially reduce the risk of reactivation of TB due to HIV to inform treatment strategies in patients with M. tuberculosis/HIV coinfection.


Asunto(s)
Antirretrovirales/uso terapéutico , Coinfección/tratamiento farmacológico , Tuberculosis Latente/complicaciones , Síndrome de Inmunodeficiencia Adquirida del Simio/complicaciones , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Animales , Fármacos Anti-VIH/uso terapéutico , Terapia Antirretroviral Altamente Activa , Carga Bacteriana , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Humanos , Tuberculosis Latente/microbiología , Tuberculosis Latente/patología , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios , Carga Viral/efectos de los fármacos
15.
Front Immunol ; 10: 2359, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681272

RESUMEN

The lungs are the most vulnerable site for air-borne infections. Immunologic compartmentalization of the lungs into airway lumen and interstitium has paved the way to determine the immune status of the site of pathogen entry, which is crucial for the outcome of any air-borne infections. Vaccination via the nasal route with Mycobacterium indicus pranii (MIP), a prospective candidate vaccine against tuberculosis (TB), has been reported to confer superior protection as compared to the subcutaneous (s.c.) route in small-animal models of TB. However, the immune mechanism remains only partly understood. Here, we showed that intranasal (i.n.) immunization of mice with MIP resulted in a significant recruitment of CD4+ and CD8+ T-cells expressing activation markers in the lung airway lumen. A strong memory T-cell response was observed in the lung airway lumen after i.n. MIP vaccination, compared with s.c. vaccination. The recruitment of these T-cells was regulated primarily by CXCR3-CXCL11 axis in "MIP i.n." group. MIP-primed T-cells in the lung airway lumen effectively transferred protective immunity into naïve mice against Mycobacterium tuberculosis (M.tb) infection and helped reducing the pulmonary bacterial burden. These signatures of protective immune response were virtually absent or very low in unimmunized and subcutaneously immunized mice, respectively, before and after M.tb challenge. Our study provides mechanistic insights for MIP-elicited protective response against M.tb infection.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Memoria Inmunológica/inmunología , Pulmón , Mycobacterium tuberculosis/inmunología , Mycobacterium/inmunología , Tuberculosis Pulmonar , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Femenino , Pulmón/inmunología , Pulmón/patología , Ratones , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/patología , Tuberculosis Pulmonar/prevención & control
16.
PLoS One ; 14(10): e0224239, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31648257

RESUMEN

Mycobacterium indicus pranii (MIP) known for its immunotherapeutic potential against leprosy and tuberculosis is undergoing various clinical trials and also simultaneously being studied in animal models to get insight into the mechanistic details contributing to its protective efficacy as a vaccine candidate. Studies have shown potential immunomodulatory properties of MIP, the most significant being the ability to induce strong Th1 type of response, enhanced expression of pro-inflammatory cytokines, activation of APCs and lymphocytes, elicitation of M.tb specific poly-functional T cells. All of these form crucial components of host-immune response during M.tb infection. Also, MIP was found to be potent inducer of autophagy in macrophages which resulted in enhanced clearance of M.tb from MIP and M.tb co-infected cells. Hence, we further examined the component/s of MIP responsible for autophagy induction. Interestingly, we found that MIP lipids and DNA were able to induce autophagy but not the protein fraction. LAM being one of the crucial components of mycobacterial cell-wall lipids and possessing the ability of immunomodulation; we isolated LAM from MIP and did a comparative study with M.tb-LAM. Stimulation with MIP-LAM resulted in significantly high secretion of pro-inflammatory cytokines and displayed high autophagy inducing potential in macrophages as compared to M.tb-LAM. Treatment with MIP-LAM enhanced the co-localization of M.tb within the phago-lysosomes and increased the clearance of M.tb from the infected macrophages. This study describes LAM to be a crucial component of MIP which has significant contribution to its immunotherapeutic efficacy against TB.


Asunto(s)
Autofagia , Inmunomodulación/efectos de los fármacos , Lipopolisacáridos/farmacología , Macrófagos/patología , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Animales , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , Tuberculosis/metabolismo , Tuberculosis/microbiología
17.
Int Immunopharmacol ; 70: 408-416, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30856391

RESUMEN

Very few adjuvants inducing Th1 immune response have been developed and are under clinical investigation. Hence, there is the need to find an adjuvant that elicits strong Th1 immune response which should be safe when injected in the host along with vaccines. Mycobacterium indicus pranii (MIP), a non-pathogenic vaccine candidate, has shown strong immunomodulatory activity in leprosy/tuberculosis/cancer and in genital warts patients where its administration shifted the host immune response towards Th1 type. These findings prompted us to study the components of MIP in detail for their Th1 inducing property. Since mycobacterial cell wall is very rich in immunostimulatory components and is known to play important role in immune modulation, we investigated the activity of MIP cell wall using Ovalbumin antigen (OVA) as model antigen. 'Whole cell wall' (CW) and 'aqueous soluble cell wall fractions' (ACW) induced significant Th1 immune response while 'cell wall skeleton' (CWS) induced strong Th2 type of immune response. Finally, functional activity of fractions having Th1 inducing activity was evaluated in mouse model of melanoma. CW demonstrated significant anti-tumor activity similar to whole MIP. Anti-tumor activity of CW could be correlated with enhanced tumor antigen specific Th1 immune response observed in tumor draining lymph nodes.


Asunto(s)
Pared Celular/metabolismo , Melanoma/inmunología , Mycobacterium/metabolismo , Células TH1/inmunología , Células Th2/inmunología , Animales , Antígenos de Neoplasias/inmunología , Pared Celular/inmunología , Humanos , Inmunomodulación , Activación de Linfocitos , Melanoma/terapia , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Neoplasias Experimentales , Balance Th1 - Th2
18.
Methods Mol Biol ; 2045: 245-258, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30242567

RESUMEN

Autophagy is a conserved catabolic process that degrades cytoplasmic constituents in the lysosome and thus contributes to the maintenance of intracellular homeostasis. The process of autophagy has been involved in many physiological and pathological processes. Therefore, there is a developing need to identify, quantify, and manipulate the autophagic process accurately in the cells. As autophagy involves dynamic and complex processes, therefore various approaches are needed to study this process precisely. In this chapter, we have tried to elaborate the approaches and methods to monitor autophagy, with a primary focus on mammalian macroautophagy. Autophagy induction can be detected using Western blotting of LC3 (marker protein for autophagosomes) in which LC3-II levels represent the quantity of autophagosomes formed on induction to a particular stimulus. This can also be confirmed by puncta formation assay using confocal microscopy. Further, the autophagic flux can be examined using bafilomycin A1 as inhibitor of autophagosome-lysosome fusion and acidification of lysosomal compartments, thereby leading to accumulation of autophagosomes which is represented by high LC3-II levels. The autophagolysosomal degradation or proteolysis which is the last step of autophagy can be analyzed by DQ-BSA assay.


Asunto(s)
Autofagia , Microscopía Confocal/métodos , Animales , Autofagosomas/metabolismo , Fluorescencia , Lisosomas/metabolismo , Ratones , Proteolisis , Células RAW 264.7
19.
PLoS One ; 12(12): e0189606, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29236768

RESUMEN

Mycobacterium indicus pranii (MIP) is a potent vaccine candidate against tuberculosis (TB) as it has demonstrated significant protection in animal models of tuberculosis as well as in clinical trials. Higher protective efficacy of MIP against TB as compared to BCG provoked the efforts to gain insight into the molecular mechanisms underlying MIP mediated protection against Mycobacterium tuberculosis (M.tb). Autophagy, initially described as a cell survival mechanism during starvation, also plays a key role in host resistance to M.tb. Virulent mycobacteria like M.tb, suppresses host autophagy response to increase its survival in macrophages. Since mycobacterial species have been shown to vary widely in their autophagy-inducing properties, in the present study, we examined the autophagy inducing efficacy of MIP and its role in MIP-mediated protection against M.tb. MIP was found to be potent inducer of autophagy in macrophages. Induced autophagy was responsible for reversal of the phagosome maturation block and phagolysosome fusion inhibition in M.tb infected macrophages, which ultimately lead to significantly enhanced clearance of M.tb from the macrophages. This is an important study which further delineated the underlying mechanisms for significant immunotherapeutic activity observed in TB patients / animal models of tuberculosis, given MIP therapy along with chemotherapy.


Asunto(s)
Autofagia/fisiología , Mycobacterium/patogenicidad , Animales , Ratones , Células RAW 264.7
20.
Tuberculosis (Edinb) ; 101: 164-173, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27865389

RESUMEN

BCG, the only approved vaccine protects against severe form of childhood tuberculosis but its protective efficacy wanes in adolescence. BCG has reduced the incidence of infant TB considerably in endemic areas; therefore prime-boost strategy is the most realistic measure for control of tuberculosis in near future. Mycobacterium indicus pranii (MIP) shares significant antigenic repertoire with Mtb and BCG and has been shown to impart significant protection in animal models of tuberculosis. In this study, MIP was given as a booster to BCG vaccine which enhanced the BCG mediated immune response, resulting in higher protection. MIP booster via aerosol route was found to be more effective in protection than subcutaneous route of booster immunization. Pro-inflammatory cytokines like IFN-γ, IL-12 and IL-17 were induced at higher level in infected lungs of 'BCG-MIP' group both at mRNA expression level and in secretory form when compared with 'only BCG' group. BCG-MIP groups had increased frequency of multifunctional T cells with high MFI for IFN-γ and TNF-α in Mtb infected mice. Our data demonstrate for the first time, potential application of MIP as a booster to BCG vaccine for efficient protection against tuberculosis. This could be very cost effective strategy for efficient control of tuberculosis.


Asunto(s)
Micobacterias no Tuberculosas/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/prevención & control , Animales , Células Presentadoras de Antígenos/inmunología , Vacuna BCG/inmunología , Carga Bacteriana , Citocinas/biosíntesis , Femenino , Cobayas , Inmunización Secundaria , Memoria Inmunológica , Interferón gamma/biosíntesis , Pulmón/microbiología , Pulmón/patología , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/aislamiento & purificación , Bazo/microbiología , Subgrupos de Linfocitos T/inmunología , Tuberculosis/inmunología , Tuberculosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...