Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38328196

RESUMEN

The cardiovascular system generates and responds to mechanical forces. The heartbeat pumps blood through a network of vascular tubes, which adjust their caliber in response to the hemodynamic environment. However, how endothelial cells in the developing vascular system integrate inputs from circulatory forces into signaling pathways to define vessel caliber is poorly understood. Using vertebrate embryos and in vitro-assembled microvascular networks of human endothelial cells as models, flow and genetic manipulations, and custom software, we reveal that Plexin-D1, an endothelial Semaphorin receptor critical for angiogenic guidance, employs its mechanosensing activity to serve as a crucial positive regulator of the Dorsal Aorta's (DA) caliber. We also uncover that the flow-responsive transcription factor KLF2 acts as a paramount mechanosensitive effector of Plexin-D1 that enlarges endothelial cells to widen the vessel. These findings illuminate the molecular and cellular mechanisms orchestrating the interplay between cardiovascular development and hemodynamic forces.

2.
Nat Commun ; 13(1): 7375, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36450710

RESUMEN

Non-ischemic cardiomyopathy (NICM) can cause left ventricular dysfunction through interstitial fibrosis, which corresponds to the failure of cardiac tissue remodeling. Recent evidence implicates monocytes/macrophages in the etiopathology of cardiac fibrosis, but giving their heterogeneity and the antagonizing roles of macrophage subtypes in fibrosis, targeting these cells has been challenging. Here we focus on WWP2, an E3 ubiquitin ligase that acts as a positive genetic regulator of human and murine cardiac fibrosis, and show that myeloid specific deletion of WWP2 reduces cardiac fibrosis in hypertension-induced NICM. By using single cell RNA sequencing analysis of immune cells in the same model, we establish the functional heterogeneity of macrophages and define an early pro-fibrogenic phase of NICM that is driven by Ccl5-expressing Ly6chigh monocytes. Among cardiac macrophage subtypes, WWP2 dysfunction primarily affects Ly6chigh monocytes via modulating Ccl5, and consequentially macrophage infiltration and activation, which contributes to reduced myofibroblast trans-differentiation. WWP2 interacts with transcription factor IRF7, promoting its non-degradative mono-ubiquitination, nuclear translocation and transcriptional activity, leading to upregulation of Ccl5 at transcriptional level. We identify a pro-fibrogenic macrophage subtype in non-ischemic cardiomyopathy, and demonstrate that WWP2 is a key regulator of IRF7-mediated Ccl5/Ly6chigh monocyte axis in heart fibrosis.


Asunto(s)
Cardiomiopatías , Isquemia Miocárdica , Humanos , Animales , Ratones , Monocitos , Ubiquitina-Proteína Ligasas/genética , Macrófagos , Fibrosis , Cardiomiopatías/genética
3.
Cells ; 11(13)2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35805148

RESUMEN

Fibrosis results from defective wound healing processes often seen after chronic injury and/or inflammation in a range of organs. Progressive fibrotic events may lead to permanent organ damage/failure. The hallmark of fibrosis is the excessive accumulation of extracellular matrix (ECM), mostly produced by pathological myofibroblasts and myofibroblast-like cells. The Hippo signaling pathway is an evolutionarily conserved kinase cascade, which has been described well for its crucial role in cell proliferation, apoptosis, cell fate decisions, and stem cell self-renewal during development, homeostasis, and tissue regeneration. Recent investigations in clinical and pre-clinical models has shown that the Hippo signaling pathway is linked to the pathophysiology of fibrotic diseases in many organs including the lung, heart, liver, kidney, and skin. In this review, we have summarized recent evidences related to the contribution of the Hippo signaling pathway in the development of organ fibrosis. A better understanding of this pathway will guide us to dissect the pathophysiology of fibrotic disorders and develop effective tissue repair therapies.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Transducción de Señal , Fibrosis , Vía de Señalización Hippo , Humanos , Miofibroblastos/metabolismo , Transducción de Señal/fisiología
4.
J Hepatol ; 77(5): 1246-1255, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35820507

RESUMEN

BACKGROUND & AIMS: Several recent clinical studies have shown that serum homocysteine (Hcy) levels are positively correlated, while vitamin B12 (B12) and folate levels are negative correlated, with non-alcoholic steatohepatitis (NASH) severity. However, it is not known whether hyperhomocysteinemia (HHcy) plays a pathogenic role in NASH. METHODS: We examined the effects of HHcy on NASH progression, metabolism, and autophagy in dietary and genetic mouse models, patients, and primates. We employed vitamin B12 (B12) and folate (Fol) to reverse NASH features in mice and cell culture. RESULTS: Serum Hcy correlated with hepatic inflammation and fibrosis in NASH. Elevated hepatic Hcy induced and exacerbated NASH. Gene expression of hepatic Hcy-metabolizing enzymes was downregulated in NASH. Surprisingly, we found increased homocysteinylation (Hcy-lation) and ubiquitination of multiple hepatic proteins in NASH including the key autophagosome/lysosome fusion protein, Syntaxin 17 (Stx17). This protein was Hcy-lated and ubiquitinated, and its degradation led to a block in autophagy. Genetic manipulation of Stx17 revealed its critical role in regulating autophagy, inflammation and fibrosis during HHcy. Remarkably, dietary B12/Fol, which promotes enzymatic conversion of Hcy to methionine, decreased HHcy and hepatic Hcy-lated protein levels, restored Stx17 expression and autophagy, stimulated ß -oxidation of fatty acids, and improved hepatic histology in mice with pre-established NASH. CONCLUSIONS: HHcy plays a key role in the pathogenesis of NASH via Stx17 homocysteinylation. B12/folate also may represent a novel first-line therapy for NASH. LAY SUMMARY: The incidence of non-alcoholic steatohepatitis, for which there are no approved pharmacological therapies, is increasing, posing a significant healthcare challenge. Herein, based on studies in mice, primates and humans, we found that dietary supplementation with vitamin B12 and folate could have therapeutic potential for the prevention or treatment of non-alcoholic steatohepatitis.


Asunto(s)
Hiperhomocisteinemia , Enfermedad del Hígado Graso no Alcohólico , Animales , Ácidos Grasos , Fibrosis , Ácido Fólico , Homocisteína , Humanos , Inflamación , Metionina , Ratones , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Proteínas Qa-SNARE , Vitamina B 12 , Vitaminas
5.
FEBS J ; 289(14): 4061-4081, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35363945

RESUMEN

Inflammation is an evolutionarily conserved process and part of the body's defense mechanism. Inflammation leads to the activation of immune and non-immune cells that protect the host tissue/organs from injury or intruding pathogens. The Hippo pathway is an evolutionarily conserved kinase cascade with an established role in regulating cell proliferation, survival, and differentiation. It is involved in diverse biological processes, including organ size control and tissue homeostasis. Recent clinical and pre-clinical studies have shown that the Hippo signaling pathway is also associated with injury- and pathogen-induced tissue inflammation and associated immunopathology. In this review, we have summarized the recent findings related to the involvement of the Hippo signaling pathway in modulating the immune response in different acute and chronic inflammatory diseases and its impact on tissue repair and remodeling.


Asunto(s)
Vía de Señalización Hippo , Proteínas Serina-Treonina Quinasas , Humanos , Inmunidad , Inflamación , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/fisiología
6.
Autophagy ; 18(9): 2150-2160, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35012409

RESUMEN

Caffeine is among the most highly consumed substances worldwide, and it has been associated with decreased cardiovascular risk. Although caffeine has been shown to inhibit the proliferation of vascular smooth muscle cells (VSMCs), the mechanism underlying this effect is unknown. Here, we demonstrated that caffeine decreased VSMC proliferation and induced macroautophagy/autophagy in an in vivo vascular injury model of restenosis. Furthermore, we studied the effects of caffeine in primary human and mouse aortic VSMCs and immortalized mouse aortic VSMCs. Caffeine decreased cell proliferation, and induced autophagy flux via inhibition of MTOR signaling in these cells. Genetic deletion of the key autophagy gene Atg5, and the Sqstm1/p62 gene encoding a receptor protein, showed that the anti-proliferative effect by caffeine was dependent upon autophagy. Interestingly, caffeine also decreased WNT-signaling and the expression of two WNT target genes, Axin2 and Ccnd1 (cyclin D1). This effect was mediated by autophagic degradation of a key member of the WNT signaling cascade, DVL2, by caffeine to decrease WNT signaling and cell proliferation. SQSTM1/p62, MAP1LC3B-II and DVL2 were also shown to interact with each other, and the overexpression of DVL2 counteracted the inhibition of cell proliferation by caffeine. Taken together, our in vivo and in vitro findings demonstrated that caffeine reduced VSMC proliferation by inhibiting WNT signaling via stimulation of autophagy, thus reducing the vascular restenosis. Our findings suggest that caffeine and other autophagy-inducing drugs may represent novel cardiovascular therapeutic tools to protect against restenosis after angioplasty and/or stent placement.


Asunto(s)
Autofagia , Músculo Liso Vascular , Animales , Autofagia/fisiología , Cafeína/metabolismo , Cafeína/farmacología , Proliferación Celular , Células Cultivadas , Humanos , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteína Sequestosoma-1/metabolismo , Vía de Señalización Wnt
7.
Cardiovasc Res ; 118(7): 1785-1804, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34132780

RESUMEN

AIMS: Fibrosis is associated with all forms of adult cardiac diseases including myocardial infarction (MI). In response to MI, the heart undergoes ventricular remodelling that leads to fibrotic scar due to excessive deposition of extracellular matrix mostly produced by myofibroblasts. The structural and mechanical properties of the fibrotic scar are critical determinants of heart function. Yes-associated protein (Yap) and transcriptional coactivator with PDZ-binding motif (Taz) are the key effectors of the Hippo signalling pathway and are crucial for cardiomyocyte proliferation during cardiac development and regeneration. However, their role in cardiac fibroblasts, regulating post-MI fibrotic and fibroinflammatory response, is not well established. METHODS AND RESULTS: Using mouse model, we demonstrate that Yap/Taz are activated in cardiac fibroblasts after MI and fibroblasts-specific deletion of Yap/Taz using Col1a2Cre(ER)T mice reduces post-MI fibrotic and fibroinflammatory response and improves cardiac function. Consistently, Yap overexpression elevated post-MI fibrotic response. Gene expression profiling shows significant downregulation of several cytokines involved in post-MI cardiac remodelling. Furthermore, Yap/Taz directly regulate the promoter activity of pro-fibrotic cytokine interleukin-33 (IL33) in cardiac fibroblasts. Blocking of IL33 receptor ST2 using the neutralizing antibody abrogates the Yap-induced pro-fibrotic response in cardiac fibroblasts. We demonstrate that the altered fibroinflammatory programme not only affects the nature of cardiac fibroblasts but also the polarization as well as infiltration of macrophages in the infarcted hearts. Furthermore, we demonstrate that Yap/Taz act downstream of both Wnt and TGFß signalling pathways in regulating cardiac fibroblasts activation and fibroinflammatory response. CONCLUSION: We demonstrate that Yap/Taz play an important role in controlling MI-induced cardiac fibrosis by modulating fibroblasts proliferation, transdifferentiation into myofibroblasts, and fibroinflammatory programme.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Interleucina-33 , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Cicatriz/metabolismo , Fibroblastos/metabolismo , Fibrosis , Corazón , Interleucina-33/metabolismo , Ratones , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Señalizadoras YAP
8.
Diabetes ; 70(9): 2131-2146, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34155039

RESUMEN

Patients with diabetes have an increased risk of heart failure (HF). Diabetes is highly prevalent in HF with preserved ejection fraction (HFpEF), which is on the rise worldwide. The role of diabetes in HF is less established, and available treatments for HF are not effective in patients with HFpEF. Tissue factor (TF), a transmembrane receptor, plays an important role in immune cell inflammation and atherothrombosis in diabetes. However, its role in diabetes-induced cardiac inflammation, hypertrophy, and HF has not been studied. In this study, we used wild-type (WT), heterozygous, and low-TF (with 1% human TF) mice to determine the role of TF in type 1 diabetes-induced HF. We found significant upregulation of cardiac TF mRNA and protein levels in diabetic WT hearts compared with nondiabetic controls. WT diabetic hearts also exhibited increased inflammation and cardiac hypertrophy versus controls. However, these changes in cardiac inflammation and hypertrophy were not found in low-TF mice with diabetes compared with their nondiabetic controls. TF deficiency was also associated with improved cardiac function parameters suggestive of HFpEF, which was evident in WT mice with diabetes. The TF regulation of inflammation and cardiac remodeling was further dependent on downstream ERK1/2 and STAT3 pathways. In summary, our study demonstrated an important role of TF in regulating diabetes-induced inflammation, hypertrophy, and remodeling of the heart leading to HFpEF.


Asunto(s)
Cardiomegalia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Insuficiencia Cardíaca/metabolismo , Inflamación/metabolismo , Miocardio/metabolismo , Tromboplastina/metabolismo , Animales , Masculino , Ratones , Tromboplastina/genética
9.
iScience ; 24(4): 102305, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33870127

RESUMEN

Blood and lymphatic vessels surrounding the heart develop through orchestrated processes from cells of different origins. In particular, cells around the outflow tract which constitute a primordial transient vasculature, referred to as aortic subepicardial vessels, are crucial for the establishment of coronary artery stems and cardiac lymphatic vessels. Here, we revealed that the epicardium and pericardium-derived Semaphorin 3E (Sema3E) and its receptor, PlexinD1, play a role in the development of the coronary stem, as well as cardiac lymphatic vessels. In vitro analyses demonstrated that Sema3E may demarcate areas to repel PlexinD1-expressing lymphatic endothelial cells, resulting in proper coronary and lymphatic vessel formation. Furthermore, inactivation of Sema3E-PlexinD1 signaling improved the recovery of cardiac function by increasing reactive lymphangiogenesis in an adult mouse model of myocardial infarction. These findings may lead to therapeutic strategies that target Sema3E-PlexinD1 signaling in coronary artery diseases.

10.
PLoS Genet ; 17(3): e1009446, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33750945

RESUMEN

The BAF complex plays an important role in the development of a wide range of tissues by modulating gene expression programs at the chromatin level. However, its role in neural crest development has remained unclear. To determine the role of the BAF complex, we deleted BAF155/BAF170, the core subunits required for the assembly, stability, and functions of the BAF complex in neural crest cells (NCCs). Neural crest-specific deletion of BAF155/BAF170 leads to embryonic lethality due to a wide range of developmental defects including craniofacial, pharyngeal arch artery, and OFT defects. RNAseq and transcription factor enrichment analysis revealed that the BAF complex modulates the expression of multiple signaling pathway genes including Hippo and Notch, essential for the migration, proliferation, and differentiation of the NCCs. Furthermore, we demonstrated that the BAF complex is essential for the Brg1-Yap-Tead-dependent transcription of target genes in NCCs. Together, our results demonstrate an important role of the BAF complex in modulating the gene regulatory network essential for neural crest development.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/embriología , Cresta Neural/metabolismo , Neurogénesis/genética , Animales , Diferenciación Celular/genética , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Desarrollo Embrionario/genética , Eliminación de Gen , Redes Reguladoras de Genes , Genes Reporteros , Ratones , Ratones Transgénicos , Especificidad de Órganos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
11.
PLoS Biol ; 18(12): e3000941, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33264286

RESUMEN

Adverse cardiac remodeling after myocardial infarction (MI) causes structural and functional changes in the heart leading to heart failure. The initial post-MI pro-inflammatory response followed by reparative or anti-inflammatory response is essential for minimizing the myocardial damage, healing, and scar formation. Bone marrow-derived macrophages (BMDMs) are recruited to the injured myocardium and are essential for cardiac repair as they can adopt both pro-inflammatory or reparative phenotypes to modulate inflammatory and reparative responses, respectively. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the key mediators of the Hippo signaling pathway and are essential for cardiac regeneration and repair. However, their functions in macrophage polarization and post-MI inflammation, remodeling, and healing are not well established. Here, we demonstrate that expression of YAP and TAZ is increased in macrophages undergoing pro-inflammatory or reparative phenotype changes. Genetic deletion of YAP/TAZ leads to impaired pro-inflammatory and enhanced reparative response. Consistently, YAP activation enhanced pro-inflammatory and impaired reparative response. We show that YAP/TAZ promote pro-inflammatory response by increasing interleukin 6 (IL6) expression and impede reparative response by decreasing Arginase-I (Arg1) expression through interaction with the histone deacetylase 3 (HDAC3)-nuclear receptor corepressor 1 (NCoR1) repressor complex. These changes in macrophages polarization due to YAP/TAZ deletion results in reduced fibrosis, hypertrophy, and increased angiogenesis, leading to improved cardiac function after MI. Also, YAP activation augmented MI-induced cardiac fibrosis and remodeling. In summary, we identify YAP/TAZ as important regulators of macrophage-mediated pro-inflammatory or reparative responses post-MI.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Macrófagos/metabolismo , Transactivadores/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Variación Biológica Poblacional/genética , Variación Biológica Poblacional/fisiología , Proteínas de Ciclo Celular/fisiología , Femenino , Inflamación/metabolismo , Macrófagos/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Fenotipo , Fosfoproteínas/metabolismo , Transducción de Señal , Transactivadores/fisiología , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
12.
Cell Rep ; 33(3): 108288, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33086060

RESUMEN

Hypertrophic cardiomyopathy (HCM) is a well-established risk factor for cardiovascular mortality worldwide. Although hypertrophy is traditionally regarded as an adaptive response to physiological or pathological stress, prolonged hypertrophy can lead to heart failure. Here we demonstrate that Prdm16 is dispensable for cardiac development. However, it is required in the adult heart to preserve mitochondrial function and inhibit hypertrophy with advanced age. Cardiac-specific deletion of Prdm16 results in cardiac hypertrophy, excessive ventricular fibrosis, mitochondrial dysfunction, and impaired metabolic flexibility, leading to heart failure. We demonstrate that Prdm16 and euchromatic histone-lysine N-methyltransferase factors (Ehmts) act together to reduce expression of fetal genes reactivated in pathological hypertrophy by inhibiting the functions of the pro-hypertrophic transcription factor Myc. Although young Prdm16 knockout mice show normal cardiac function, they are predisposed to develop heart failure in response to metabolic stress. Our study demonstrates that Prdm16 protects the heart against age-dependent cardiac hypertrophy and heart failure.


Asunto(s)
Cardiomegalia/genética , Proteínas de Unión al ADN/genética , Insuficiencia Cardíaca/genética , Factores de Transcripción/genética , Animales , Remodelación Atrial/genética , Cardiomegalia/metabolismo , Cardiomiopatía Hipertrófica/metabolismo , Línea Celular , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Insuficiencia Cardíaca/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Ratas , Factores de Transcripción/metabolismo
13.
Front Cell Dev Biol ; 7: 211, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632964

RESUMEN

Heart disease continues to be the leading cause of morbidity and mortality worldwide. Cardiac malformation during development could lead to embryonic or postnatal death. However, matured heart tissue has a very limited regenerative capacity. Thus, loss of cardiomyocytes from injury or diseases in adults could lead to heart failure. The Hippo signaling pathway is a newly identified signaling cascade that modulates regenerative response by regulating cardiomyocyte proliferation in the embryonic heart, as well as in postnatal hearts after injury. In this review, we summarize recent findings highlighting the function and regulation of the Hippo signaling pathway in cardiac development and diseases.

14.
JCI Insight ; 4(16)2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31434798

RESUMEN

Left ventricular noncompaction (LVNC) is one of the most common forms of genetic cardiomyopathy characterized by excessive trabeculation and impaired myocardial compaction during fetal development. Patients with LVNC are at higher risk of developing left/right ventricular failure or both. Although the key regulators for cardiac chamber development are well studied, the role of semaphorin (Sema)/plexin signaling in this process remains poorly understood. In this article, we demonstrate that genetic deletion of Plxnd1, a class-3 Sema receptor in endothelial cells, leads to severe cardiac chamber defects. They were characterized by excessive trabeculation and noncompaction similar to patients with LVNC. Loss of Plxnd1 results in decreased expression of extracellular matrix proteolytic genes, leading to excessive deposition of cardiac jelly. We demonstrate that Plxnd1 deficiency is associated with an increase in Notch1 expression and its downstream target genes. In addition, inhibition of the Notch signaling pathway partially rescues the excessive trabeculation and noncompaction phenotype present in Plxnd1 mutants. Furthermore, we demonstrate that Semaphorin 3E (Sema3E), one of PlexinD1's known ligands, is expressed in the developing heart and is required for myocardial compaction. Collectively, our study uncovers what we believe to be a previously undescribed role of the Sema3E/PlexinD1 signaling pathway in myocardial trabeculation and the compaction process.


Asunto(s)
Cardiopatías Congénitas/embriología , Ventrículos Cardíacos/embriología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Semaforinas/metabolismo , Transducción de Señal , Animales , Endotelio Vascular/embriología , Endotelio Vascular/metabolismo , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Glicoproteínas de Membrana/genética , Ratones Noqueados , Receptor Notch1/metabolismo , Regulación hacia Arriba
15.
Elife ; 82019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31241461

RESUMEN

Alternative splicing (AS) creates proteomic diversity from a limited size genome by generating numerous transcripts from a single protein-coding gene. Tissue-specific regulators of AS are essential components of the gene regulatory network, required for normal cellular function, tissue patterning, and embryonic development. However, their cell-autonomous function in neural crest development has not been explored. Here, we demonstrate that splicing factor Rbfox2 is expressed in the neural crest cells (NCCs), and deletion of Rbfox2 in NCCs leads to cleft palate and defects in craniofacial bone development. RNA-Seq analysis revealed that Rbfox2 regulates splicing and expression of numerous genes essential for neural crest/craniofacial development. We demonstrate that Rbfox2-TGF-ß-Tak1 signaling axis is deregulated by Rbfox2 deletion. Furthermore, restoration of TGF-ß signaling by Tak1 overexpression can rescue the proliferation defect seen in Rbfox2 mutants. We also identified a positive feedback loop in which TGF-ß signaling promotes expression of Rbfox2 in NCCs.


Asunto(s)
Anomalías Craneofaciales/patología , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/embriología , Cresta Neural/enzimología , Factores de Empalme de ARN/deficiencia , Animales , Modelos Animales de Enfermedad , Ratones , Análisis de Secuencia de ARN
16.
J Biol Chem ; 294(21): 8336-8347, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30979723

RESUMEN

Primary hyperparathyroidism (PHPT) is a common endocrinopathy characterized by hypercalcemia and elevated levels of parathyroid hormone. The primary cause of PHPT is a benign overgrowth of parathyroid tissue causing excessive secretion of parathyroid hormone. However, the molecular etiology of PHPT is incompletely defined. Here, we demonstrate that semaphorin3d (Sema3d), a secreted glycoprotein, is expressed in the developing parathyroid gland in mice. We also observed that genetic deletion of Sema3d leads to parathyroid hyperplasia, causing PHPT. In vivo and in vitro experiments using histology, immunohistochemistry, biochemical, RT-qPCR, and immunoblotting assays revealed that Sema3d inhibits parathyroid cell proliferation by decreasing the epidermal growth factor receptor (EGFR)/Erb-B2 receptor tyrosine kinase (ERBB) signaling pathway. We further demonstrate that EGFR signaling is elevated in Sema3d-/- parathyroid glands and that pharmacological inhibition of EGFR signaling can partially rescue the parathyroid hyperplasia phenotype. We propose that because Sema3d is a secreted protein, it may be possible to use recombinant Sema3d or derived peptides to inhibit parathyroid cell proliferation causing hyperplasia and hyperparathyroidism. Collectively, these findings identify Sema3d as a negative regulator of parathyroid growth.


Asunto(s)
Proliferación Celular , Hiperparatiroidismo Primario/epidemiología , Glándulas Paratiroides/embriología , Semaforinas/deficiencia , Transducción de Señal , Animales , Receptores ErbB/genética , Receptores ErbB/metabolismo , Hiperparatiroidismo Primario/genética , Hiperparatiroidismo Primario/patología , Ratones , Ratones Noqueados , Glándulas Paratiroides/patología , Semaforinas/metabolismo
17.
Proc Natl Acad Sci U S A ; 115(14): E3173-E3181, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29559533

RESUMEN

Wnts and R-spondins (RSPOs) support intestinal homeostasis by regulating crypt cell proliferation and differentiation. Ex vivo, Wnts secreted by Paneth cells in organoids can regulate the proliferation and differentiation of Lgr5-expressing intestinal stem cells. However, in vivo, Paneth cell and indeed all epithelial Wnt production is completely dispensable, and the cellular source of Wnts and RSPOs that maintain the intestinal stem-cell niche is not known. Here we investigated both the source and the functional role of stromal Wnts and RSPO3 in regulation of intestinal homeostasis. RSPO3 is highly expressed in pericryptal myofibroblasts in the lamina propria and is several orders of magnitude more potent than RSPO1 in stimulating both Wnt/ß-catenin signaling and organoid growth. Stromal Rspo3 ablation ex vivo resulted in markedly decreased organoid growth that was rescued by exogenous RSPO3 protein. Pdgf receptor alpha (PdgfRα) is known to be expressed in pericryptal myofibroblasts. We therefore evaluated if PdgfRα identified the key stromal niche cells. In vivo, Porcn excision in PdgfRα+ cells blocked intestinal crypt formation, demonstrating that Wnt production in the stroma is both necessary and sufficient to support the intestinal stem-cell niche. Mice with Rspo3 excision in the PdgfRα+ cells had decreased intestinal crypt Wnt/ß-catenin signaling and Paneth cell differentiation and were hypersensitive when stressed with dextran sodium sulfate. The data support a model of the intestinal stem-cell niche regulated by both Wnts and RSPO3 supplied predominantly by stromal pericryptal myofibroblasts marked by PdgfRα.


Asunto(s)
Células Epiteliales/citología , Intestinos/citología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/fisiología , Nicho de Células Madre/fisiología , Células Madre/citología , Células del Estroma/citología , Trombospondinas/metabolismo , Proteína Wnt1/metabolismo , Aciltransferasas/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Células Epiteliales/metabolismo , Homeostasis , Mucosa Intestinal/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Organoides/citología , Organoides/metabolismo , Células Madre/metabolismo , Células del Estroma/metabolismo , Trombospondinas/genética , Proteína Wnt1/genética
18.
J Clin Invest ; 127(3): 899-911, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28165342

RESUMEN

Ischemic heart disease resulting from myocardial infarction (MI) is the most prevalent form of heart disease in the United States. Post-MI cardiac remodeling is a multifaceted process that includes activation of fibroblasts and a complex immune response. T-regulatory cells (Tregs), a subset of CD4+ T cells, have been shown to suppress the innate and adaptive immune response and limit deleterious remodeling following myocardial injury. However, the mechanisms by which injured myocardium recruits suppressive immune cells remain largely unknown. Here, we have shown a role for Hippo signaling in the epicardium in suppressing the post-infarct inflammatory response through recruitment of Tregs. Mice deficient in epicardial YAP and TAZ, two core Hippo pathway effectors, developed profound post-MI pericardial inflammation and myocardial fibrosis, resulting in cardiomyopathy and death. Mutant mice exhibited fewer suppressive Tregs in the injured myocardium and decreased expression of the gene encoding IFN-γ, a known Treg inducer. Furthermore, controlled local delivery of IFN-γ following MI rescued Treg infiltration into the injured myocardium of YAP/TAZ mutants and decreased fibrosis. Collectively, these results suggest that epicardial Hippo signaling plays a key role in adaptive immune regulation during the post-MI recovery phase.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Tolerancia Inmunológica , Infarto del Miocardio/inmunología , Pericardio/inmunología , Fosfoproteínas/inmunología , Linfocitos T Reguladores/inmunología , Factores de Transcripción/inmunología , Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Cardiomiopatías/etiología , Cardiomiopatías/genética , Cardiomiopatías/inmunología , Cardiomiopatías/patología , Proteínas de Ciclo Celular , Fibrosis , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Infarto del Miocardio/complicaciones , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Pericardio/patología , Fosfoproteínas/genética , Linfocitos T Reguladores/patología , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
19.
Basic Res Cardiol ; 111(6): 69, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27743118

RESUMEN

In this meeting report, particularly addressing the topic of protection of the cardiovascular system from ischemia/reperfusion injury, highlights are presented that relate to conditioning strategies of the heart with respect to molecular mechanisms and outcome in patients' cohorts, the influence of co-morbidities and medications, as well as the contribution of innate immune reactions in cardioprotection. Moreover, developmental or systems biology approaches bear great potential in systematically uncovering unexpected components involved in ischemia-reperfusion injury or heart regeneration. Based on the characterization of particular platelet integrins, mitochondrial redox-linked proteins, or lipid-diol compounds in cardiovascular diseases, their targeting by newly developed theranostics and technologies opens new avenues for diagnosis and therapy of myocardial infarction to improve the patients' outcome.


Asunto(s)
Cardiología/tendencias , Enfermedades Cardiovasculares , Nanomedicina Teranóstica/tendencias , Animales , Cardiología/métodos , Humanos
20.
Nat Commun ; 7: 12061, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27389904

RESUMEN

Coronary flow (CF) measured ex vivo is largely determined by capillary density that reflects angiogenic vessel formation in the heart in vivo. Here we exploit this relationship and show that CF in the rat is influenced by a locus on rat chromosome 2 that is also associated with cardiac capillary density. Mitochondrial tryptophanyl-tRNA synthetase (Wars2), encoding an L53F protein variant within the ATP-binding motif, is prioritized as the candidate at the locus by integrating genomic data sets. WARS2(L53F) has low enzyme activity and inhibition of WARS2 in endothelial cells reduces angiogenesis. In the zebrafish, inhibition of wars2 results in trunk vessel deficiencies, disordered endocardial-myocardial contact and impaired heart function. Inhibition of Wars2 in the rat causes cardiac angiogenesis defects and diminished cardiac capillary density. Our data demonstrate a pro-angiogenic function for Wars2 both within and outside the heart that may have translational relevance given the association of WARS2 with common human diseases.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genoma , Células Endoteliales de la Vena Umbilical Humana/enzimología , Mitocondrias/genética , Neovascularización Fisiológica/genética , Triptófano-ARNt Ligasa/genética , Secuencia de Aminoácidos , Animales , Mapeo Cromosómico , Cromosomas de los Mamíferos/química , Embrión no Mamífero , Sitios Genéticos , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Mitocondrias/metabolismo , Miocardio/citología , Miocardio/enzimología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Triptófano-ARNt Ligasa/antagonistas & inhibidores , Triptófano-ARNt Ligasa/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...