Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 214: 108916, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39002305

RESUMEN

Nicotine constitutes approximately 90% of the total alkaloid content in leaves within the Nicotiana species, rendering it the most prevalent alkaloid. While the majority of genes responsible for nicotine biosynthesis express in root tissue, the influence of light on this process through shoot-to-root mobile ELONGATED HYPOCOTYL 5 (HY5) has been recognized. CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), a key regulator of light-associated responses, known for its role in modulating HY5 accumulation, remains largely unexplored in its relationship to light-dependent nicotine accumulation. Here, we identified NtCOP1, a COP1 homolog in Nicotiana tabacum, and demonstrated its ability to complement the cop1-4 mutant in Arabidopsis thaliana at molecular, morphological, and biochemical levels. Through the development of NtCOP1 overexpression (NtCOP1OX) plants, we observed a significant reduction in nicotine and flavonol content, inversely correlated with the down-regulation of nicotine and phenylpropanoid pathway. Conversely, CRISPR/Cas9-based knockout mutant plants (NtCOP1CR) exhibited an increase in nicotine levels. Further investigations, including yeast-two hybrid assays, grafting experiments, and Western blot analyses, revealed that NtCOP1 modulates nicotine biosynthesis by targeting NtHY5, thereby impeding its transport from shoot-to-root. We conclude that the interplay between HY5 and COP1 functions antagonistically in the light-dependent regulation of nicotine biosynthesis in tobacco.

2.
PLoS One ; 19(5): e0296565, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38781195

RESUMEN

Epigenetic silencing through methylation is one of the major mechanisms for downregulation of tumor suppressor miRNAs in various malignancies. The aim of this study was to identify novel tumor suppressor miRNAs which are silenced by DNA hypermethylation and investigate the role of at least one of these in oral squamous cell carcinoma (OSCC) pathogenesis. We treated cells from an OSCC cell line SCC131 with 5-Azacytidine, a DNA methyltransferase inhibitor, to reactivate tumor suppressor miRNA genes silenced/downregulated due to DNA methylation. At 5-day post-treatment, total RNA was isolated from the 5-Azacytidine and vehicle control-treated cells. The expression of 2,459 mature miRNAs was analysed between 5-Azacytidine and control-treated OSCC cells by the microRNA microarray analysis. Of the 50 miRNAs which were found to be upregulated following 5-Azacytidine treatment, we decided to work with miR-6741-3p in details for further analysis, as it showed a mean fold expression of >4.0. The results of qRT-PCR, Western blotting, and dual-luciferase reporter assay indicated that miR-6741-3p directly targets the oncogene SRSF3 at the translational level only. The tumor-suppressive role of miR-6741-3p was established by various in vitro assays and in vivo study in NU/J athymic nude mice. Our results revealed that miR-6741-3p plays a tumor-suppressive role in OSCC pathogenesis, in part, by directly regulating SRSF3. Based on our observations, we propose that miR-6741-3p may serve as a potential biological target in tumor diagnostics, prognostic evaluation, and treatment of OSCC and perhaps other malignancies.


Asunto(s)
Carcinoma de Células Escamosas , Regulación Neoplásica de la Expresión Génica , MicroARNs , Neoplasias de la Boca , Factores de Empalme Serina-Arginina , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Animales , Línea Celular Tumoral , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Metilación de ADN , Intrones/genética , Ratones Desnudos , Azacitidina/farmacología , Oncogenes/genética
3.
Langmuir ; 40(16): 8450-8462, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38596886

RESUMEN

Fabrication of codoped photocatalysts is a developing area of research. Herein, we explore the visible light photocatalytic properties of Cu, Zn codoped BiVO4 particles. Doping lower valent cations (Cu and Zn) makes the BiVO4 surface more acidic and enables us to target the basic crystal violet (CV) dye. The adopted hydrothermal protocol of synthesis results in the formation of Cu-Zn codoped monoclinic BiVO4 particles. Undoped monoclinic BiVO4, prepared by the same protocol, showed significant formation of oxygen vacancies. XPS analyses confirm the coexistence of Cu2+/Cu+ and Zn2+ dopants. Increased dopant percentage reduced oxygen vacancies. XRD indicates that Cu2+/Cu+ or Zn2+ dopants generally substitute Bi3+ in BiVO4. All photocatalysis activities for CV degradation are reported under near-neutral pH conditions. A typical codoped BiVO4 photocatalyst with 1% Zn and 2% Cu demonstrated the best CV degradation photocatalytic activity. The activity of this Zn, Cu codoped photocatalyst is better than that of pure, Zn-doped, and Cu-doped BiVO4 samples. Active species trapping experiments indicated the possible photocatalysis mechanism. The photocatalysts exhibited appropriate recyclability and photostability.

4.
Int J Med Mushrooms ; 26(4): 73-82, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523451

RESUMEN

This paper evaluated the effect of different substrate disinfection methods viz. hot water treatment, autoclaving and steam pasteurization at 100°C, 121°C, and 65°C, respectively, on yield of Hypsizygus ulmarius and effects of sun drying, oven drying and cabinet drying techniques at 25 ± 2°C, 40 ± 2°C, and 50 ± 2°C, respectively, on nutritional qualities of H. ulmarius. Hot water treated substrate gave higher yield (215.36 ± 1.49 g) and biological efficiency (71.78%) compared with autoclaved (194.45 ± 3.36 g and 64.81%) and steam pasteurized substrate (194.45 ± 3.36 g and 65.28%). The different drying methods used for drying the fruit bodies significantly influenced the nutrient profile of H. ulmarius. Highest moisture (6.95%), fiber (16.94%) and protein content (22.49%) was retained in sun dried fruit bodies whereas ash content (5.52%) was highest for oven dried fruit bodies. Cabinet dried fruit bodies showed significantly higher percentage of fats (1.82%) and carbohydrates (53.58%). In the DPPH assay the cabinet dried fruit bodies showed the highest antioxidant activity followed by sun dried and oven dried fruit bodies with respective IC50 values as 104.21 ± 0.14, 117.17 ± 0.07 and 163.57 ± 0.02. The drying methods proved to be effective in controlling the bacterial growth for a period of two months after which significant bacterial growth was noted.


Asunto(s)
Agaricales , Pleurotus , Vapor , Desinfección , Antioxidantes/farmacología
5.
ACS Omega ; 9(9): 10748-10768, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38463293

RESUMEN

Cerebroside sulfotransferase (CST) is emerging as an important therapeutic target to develop substrate reduction therapy (SRT) for metachromatic leukodystrophy (MLD), a rare neurodegenerative lysosomal storage disorder. MLD develops with progressive impairment and destruction of the myelin sheath as a result of accumulation of sulfatide around the nerve cells in the absence of its recycling mechanism with deficiency of arylsulfatase A (ARSA). Sulfatide is the product of the catalytic action of cerebroside sulfotransferase (CST), which needs to be regulated under pathophysiological conditions by inhibitor development. To carry out in silico-based preliminary drug screening or for designing new drug candidates, a high-quality three-dimensional (3D) structure is needed in the absence of an experimentally derived three-dimensional crystal structure. In this study, a 3D model of the protein was developed using a primary sequence with the SWISS-MODEL server by applying the top four GMEQ score-based templates belonging to the sulfotransferase family as a reference. The 3D model of CST highlights the features of the protein responsible for its catalytic action. The CST model comprises five ß-strands, which are flanked by ten α-helices from both sides as well as form the upside cover of the catalytic pocket of CST. CST has two catalytic regions: PAPS (-sulfo donor) binding and galactosylceramide (-sulfo acceptor) binding. The catalytic action of CST was proposed via molecular docking and molecular dynamic (MD) simulation with PAPS, galactosylceramide (GC), PAPS-galactosylceramide, and PAP. The stability of the model and its catalytic action were confirmed using molecular dynamic simulation-based trajectory analysis. CST response against the inhibition potential of the experimentally reported competitive inhibitor of CST was confirmed via molecular docking and molecular dynamics simulation, which suggested the suitability of the CST model for future drug discovery to strengthen substrate reduction therapy for MLD.

6.
Plant Physiol Biochem ; 207: 108397, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38316099

RESUMEN

More than 8 million deaths are caused by tobacco-related diseases every year. A staggering 1.2 million of those fatalities occur due to second-hand smoke exposure among non-smokers, but more than 7 million are due to direct tobacco use among smokers. Nicotine acts as the key ingredient triggering the addiction. The United States Food and Drug Administration (FDA) has classified more than 90 chemical components of tobacco and related smoke as hazardous or potentially hazardous leading to cancer, cardiovascular, respiratory, and reproductive disorders. Hence, reducing nicotine content has been the foremost objective to reduce health and death risks. Therefore, various biotechnological approaches for developing tobacco varieties with low nicotine concentrations are urgently required for the welfare of humankind. In recent years, numerous advancements have been made in nicotine-based tobacco research, suggesting regulatory components involved in nicotine biosynthesis and developing nicotine-less tobacco varieties through biotechnological approaches. This review highlights the various regulatory components and major approaches used to modulate nicotine content in tobacco cultivars.


Asunto(s)
Nicotina , Tabaquismo , Estados Unidos , Biotecnología
7.
J Hazard Mater ; 465: 133255, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38103287

RESUMEN

Tobacco remains one of the most commercially important crops due to the parasympathomimetic alkaloid nicotine used in cigarettes. Most genes involved in nicotine biosynthesis are expressed in root tissues; however, their light-dependent regulation has not been studied. Here, we identified the ELONGATED HYPOCOTYL 5 homolog, NtHY5, from Nicotiana tabacum and demonstrated that NtHY5 could complement the Arabidopsis thaliana hy5 mutant at molecular, morphological and biochemical levels. We report the development of CRISPR/Cas9-based knockout mutant plants of tobacco, NtHY5CR, and show down-regulation of the nicotine and phenylpropanoid pathway genes leading to a significant reduction in nicotine and flavonol content, whereas NtHY5 overexpression (NtHY5OX) plants show the opposite effect. Grafting experiments using wild-type, NtHY5CR, and NtHY5OX indicated that NtHY5 moves from shoot-to-root to regulate nicotine biosynthesis in the root tissue. Shoot HY5, directly or through enhancing expression of the root HY5, promotes nicotine biosynthesis by binding to light-responsive G-boxes present in the NtPMT, NtQPT and NtODC promoters. We conclude that the mobility of HY5 from shoot-to-root regulates light-dependent nicotine biosynthesis. The CRISPR/Cas9-based mutants developed, in this study; with low nicotine accumulation in leaves could help people to overcome their nicotine addiction and the risk of death.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Nicotiana , Nicotina , Proteínas de Plantas , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Luz , Mutación , Nicotiana/genética , Nicotina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Int J Biol Macromol ; 258(Pt 1): 128780, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104688

RESUMEN

This review is an effort towards the development of substrate reduction therapy using cerebroside sulfotransferase (CST) as a target protein for the development of inhibitors intended to treat pathophysiological condition resulting from the accumulation of sulfatide, a product from the catalytic action of CST. Accumulation of sulfatides leads to progressive impairment and destruction of the myelin structure, disruption of normal physiological transmission of electrical impulse between nerve cells, axonal loss in the central and peripheral nervous system and cumulatively gives a clinical manifestation of metachromatic leukodystrophy. Thus, there is a need to develop specific and potent CST inhibitors to positively control sulfatide accumulation. Structural similarity and computational studies revealed that LYS85, SER172 and HIS141 are key catalytic residues that determine the catalytic action of CST through the transfer of sulfuryl group from the donor PAPS to the acceptor galactosylceramide. Computational studies revealed catalytic site of CST consists two binding site pocket including PAPS binding pocket and substrate binding pocket. Specific substrate site residues in CST can be targeted to develop specific CST inhibitors. This review also explores the challenges of CST-directed substrate reduction therapy as well as the opportunities available in natural products for inhibitor development.


Asunto(s)
Leucodistrofia Metacromática , Sulfotransferasas , Humanos , Leucodistrofia Metacromática/metabolismo , Sulfoglicoesfingolípidos , Vaina de Mielina/metabolismo , Neuronas/metabolismo
9.
Cell Rep ; 42(12): 113543, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38048222

RESUMEN

We have generated a high-resolution Hi-C map of developing human retinal organoids to elucidate spatiotemporal dynamics of genomic architecture and its relationship with gene expression patterns. We demonstrate progressive stage-specific alterations in DNA topology and correlate these changes with transcription of cell-type-restricted gene markers during retinal differentiation. Temporal Hi-C reveals a shift toward A compartment for protein-coding genes and B compartment for non-coding RNAs, displaying high and low expression, respectively. Notably, retina-enriched genes are clustered near lost boundaries of topologically associated domains (TADs), and higher-order assemblages (i.e., TAD cliques) localize in active chromatin regions with binding sites for eye-field transcription factors. These genes gain chromatin contacts at their transcription start site as organoid differentiation proceeds. Our study provides a global view of chromatin architecture dynamics associated with diversification of cell types during retinal development and serves as a foundational resource for in-depth functional investigations of retinal developmental traits.


Asunto(s)
Cromatina , Genoma , Humanos , Diferenciación Celular/genética , Retina , Organoides
10.
BMC Chem ; 17(1): 161, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993971

RESUMEN

Melanoma presents increasing prevalence and poor outcomes. Progression to aggressive stages is characterized by overexpression of the transcription factor E2F1 and activation of downstream prometastatic gene regulatory networks (GRNs). Appropriate therapeutic manipulation of the E2F1-governed GRNs holds the potential to prevent metastasis however, these networks entail complex feedback and feedforward regulatory motifs among various regulatory layers, which make it difficult to identify druggable components. To this end, computational approaches such as mathematical modeling and virtual screening are important tools to unveil the dynamics of these signaling networks and identify critical components that could be further explored as therapeutic targets. Herein, we integrated a well-established E2F1-mediated epithelial-mesenchymal transition (EMT) map with transcriptomics data from E2F1-expressing melanoma cells to reconstruct a core regulatory network underlying aggressive melanoma. Using logic-based in silico perturbation experiments of a core regulatory network, we identified that simultaneous perturbation of Protein kinase B (AKT1) and oncoprotein murine double minute 2 (MDM2) drastically reduces EMT in melanoma. Using the structures of the two protein signatures, virtual screening strategies were performed with the FDA-approved drug library. Furthermore, by combining drug repurposing and computer-aided drug design techniques, followed by molecular dynamics simulation analysis, we identified two potent drugs (Tadalafil and Finasteride) that can efficiently inhibit AKT1 and MDM2 proteins. We propose that these two drugs could be considered for the development of therapeutic strategies for the management of aggressive melanoma.

11.
Cell Mol Life Sci ; 80(10): 295, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37726569

RESUMEN

Recently, the localization of amyloid precursor protein (APP) into reversible nanoscale supramolecular assembly or "nanodomains" has been highlighted as crucial towards understanding the onset of the molecular pathology of Alzheimer's disease (AD). Surface expression of APP is regulated by proteins interacting with it, controlling its retention and lateral trafficking on the synaptic membrane. Here, we evaluated the involvement of a key risk factor for AD, PICALM, as a critical regulator of nanoscale dynamics of APP. Although it was enriched in the postsynaptic density, PICALM was also localized to the presynaptic active zone and the endocytic zone. PICALM colocalized with APP and formed nanodomains with distinct morphological properties in different subsynaptic regions. Next, we evaluated if this localization to subsynaptic compartments was regulated by the C-terminal sequences of APP, namely, the "Y682ENPTY687" domain. Towards this, we found that deletion of C-terminal regions of APP with partial or complete deletion of Y682ENPTY687, namely, APP-Δ9 and APP-Δ14, affected the lateral diffusion and nanoscale segregation of APP. Lateral diffusion of APP mutant APP-Δ14 sequence mimicked that of a detrimental Swedish mutant of APP, namely, APP-SWE, while APP-Δ9 diffused similar to wild-type APP. Interestingly, elevated expression of PICALM differentially altered the lateral diffusion of the APP C-terminal deletion mutants. These observations confirm that the C-terminal sequence of APP regulates its lateral diffusion and the formation of reversible nanoscale domains. Thus, when combined with autosomal dominant mutations, it generates distinct molecular patterns leading to onset of Alzheimer's disease (AD).


Asunto(s)
Enfermedad de Alzheimer , Artrogriposis , Proteínas de Ensamble de Clatrina Monoméricas , Humanos , Precursor de Proteína beta-Amiloide/genética , Enfermedad de Alzheimer/genética , Mutación , Factores de Riesgo , Proteínas de Ensamble de Clatrina Monoméricas/genética
12.
bioRxiv ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37745522

RESUMEN

Beta-Propeller Protein-Associated Neurodegeneration (BPAN) is one of the commonest forms of Neurodegeneration with Brain Iron Accumulation, caused by mutations in the gene encoding the autophagy-related protein, WDR45. The mechanisms linking autophagy, iron overload and neurodegeneration in BPAN are poorly understood and, as a result, there are currently no disease-modifying treatments for this progressive disorder. We have developed a patient-derived, induced pluripotent stem cell (iPSC)-based midbrain dopaminergic neuronal cell model of BPAN (3 patient, 2 age-matched controls and 2 isogenic control lines) which shows defective autophagy and aberrant gene expression in key neurodegenerative, neurodevelopmental and collagen pathways. A high content imaging-based medium-throughput blinded drug screen using the FDA-approved Prestwick library identified 5 cardiac glycosides that both corrected disease-related defective autophagosome formation and restored BPAN-specific gene expression profiles. Our findings have clear translational potential and emphasise the utility of iPSC-based modelling in elucidating disease pathophysiology and identifying targeted therapeutics for early-onset monogenic disorders.

13.
Mol Neurobiol ; 60(6): 3277-3298, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36828952

RESUMEN

The ubiquitin-proteasome system (UPS) controls protein homeostasis to maintain cell functionality and survival. Neurogenesis relies on proteasome function, and a defective proteasome system during brain development leads to neurological disorders. An endocrine-disrupting xenoestrogen bisphenol-A (BPA) used in plastic products adversely affects human health and causes neurotoxicity. Previously, we reported that BPA reduces neural stem cells (NSCs) proliferation and differentiation, impairs myelination and mitochondrial protein import, and causes excessive mitochondrial fragmentation leading to cognitive impairments in rats. Herein, we examined the effect(s) of prenatal BPA exposure on UPS functions during NSCs proliferation and differentiation in the hippocampus. Rats were orally treated with 40 µg/kg body weight BPA during day 6 gestation to day 21 postnatal. BPA significantly reduced proteasome activity in a cellular extract of NSCs. Immunocytochemistry exhibited a significant reduction of 20S proteasome/Nestin+ and PSMB5/Nestin+ cells in NSCs culture. BPA decreased 20S/Tuj1+ and PSMB5/Tuj1+ cells, indicating disrupted UPS during neuronal differentiation. BPA reduced the expression of UPS genes, 20S, and PSMB5 protein levels and proteasome activity in the hippocampus. It significantly reduced overall protein synthesis by the loss of Nissl substances in the hippocampus. Pharmacological activation of UPS by a bioactive triterpenoid 18α-glycyrrhetinic acid (18α GA) caused increased proteasome activities, significantly increased neurosphere size and number, and enhanced NSCs proliferation in BPA exposed culture, while proteasome inhibition by MG132 further aggravates BPA-mediated effects. In silico studies demonstrated that BPA strongly binds to catalytic sites of UPS genes (PSMB5, TRIM11, Parkin, and PSMD4) which may result in UPS inactivation. These results suggest that BPA significantly reduces NSCs proliferation by impairing UPS, and UPS activation by 18α GA could suppress BPA-mediated neurotoxicity and exerts neuroprotection.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Embarazo , Femenino , Animales , Ratas , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Nestina/metabolismo , Ubiquitina/metabolismo , Neurogénesis , Hipocampo/metabolismo , Compuestos de Bencidrilo/toxicidad , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/farmacología , Ubiquitina-Proteína Ligasas/metabolismo
14.
Nat Nanotechnol ; 18(4): 380-389, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36690737

RESUMEN

Neuromorphic cameras are a new class of dynamic-vision-inspired sensors that encode the rate of change of intensity as events. They can asynchronously record intensity changes as spikes, independent of the other pixels in the receptive field, resulting in sparse measurements. This recording of such sparse events makes them ideal for imaging dynamic processes, such as the stochastic emission of isolated single molecules. Here we show the application of neuromorphic detection to localize nanoscale fluorescent objects below the diffraction limit, with a precision below 20 nm. We demonstrate a combination of neuromorphic detection with segmentation and deep learning approaches to localize and track fluorescent particles below 50 nm with millisecond temporal resolution. Furthermore, we show that combining information from events resulting from the rate of change of intensities improves the classical limit of centroid estimation of single fluorescent objects by nearly a factor of two. Additionally, we validate that using post-processed data from the neuromorphic detector at defined windows of temporal integration allows a better evaluation of the fractalized diffusion of single particle trajectories. Our observations and analysis is useful for event sensing by nonlinear neuromorphic devices to ameliorate real-time particle localization approaches at the nanoscale.

15.
Nat Commun ; 13(1): 5827, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207300

RESUMEN

Chromatin organization and enhancer-promoter contacts establish unique spatiotemporal gene expression patterns in distinct cell types. Non-coding genetic variants can influence cellular phenotypes by modifying higher-order transcriptional hubs and consequently gene expression. To elucidate genomic regulation in human retina, we mapped chromatin contacts at high resolution and integrated with super-enhancers (SEs), histone marks, binding of CTCF and select transcription factors. We show that topologically associated domains (TADs) with central SEs exhibit stronger insulation and augmented contact with retinal genes relative to TADs with edge SEs. Merging genome-wide expression quantitative trait loci (eQTLs) with topology map reveals physical links between 100 eQTLs and corresponding eGenes associated with retinal neurodegeneration. Additionally, we uncover candidate genes for susceptibility variants linked to age-related macular degeneration and glaucoma. Our study of high-resolution genomic architecture of human retina provides insights into genetic control of tissue-specific functions, suggests paradigms for missing heritability, and enables the dissection of common blinding disease phenotypes.


Asunto(s)
Cromatina , Sitios de Carácter Cuantitativo , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Humanos , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo/genética , Retina/metabolismo , Factores de Transcripción/metabolismo
17.
Nat Commun ; 13(1): 4236, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869063

RESUMEN

Synapse associated protein-97/Human Disk Large (SAP97/hDLG) is a conserved, alternatively spliced, modular, scaffolding protein critical in regulating the molecular organization of cell-cell junctions in vertebrates. We confirm that the molecular determinants of first order phase transition of SAP97/hDLG is controlled by morpho-functional changes in its nanoscale organization. Furthermore, the nanoscale molecular signatures of these signalling islands and phase transitions are altered in response to changes in cytosolic Ca2+. Additionally, exchange kinetics of alternatively spliced isoforms of the intrinsically disordered region in SAP97/hDLG C-terminus shows differential sensitivities to Ca2+ bound Calmodulin, affirming that the molecular signatures of local phase transitions of SAP97/hDLG depends on their nanoscale heterogeneity and compositionality of isoforms.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Calcio/metabolismo , Homólogo 1 de la Proteína Discs Large/metabolismo , Proteínas de la Membrana , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Calmodulina/genética , Calmodulina/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Isoformas de Proteínas/metabolismo
18.
Nucleic Acids Res ; 50(6): e35, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-34928367

RESUMEN

Three-dimensional (3D) conformation of the chromatin is crucial to stringently regulate gene expression patterns and DNA replication in a cell-type specific manner. Hi-C is a key technique for measuring 3D chromatin interactions genome wide. Estimating and predicting the resolution of a library is an essential step in any Hi-C experimental design. Here, we present the mathematical concepts to estimate the resolution of a dataset and predict whether deeper sequencing would enhance the resolution. We have developed HiCRes, a docker pipeline, by applying these concepts to several Hi-C libraries.


Asunto(s)
Cromosomas , Biología Computacional/métodos , Genoma , Cromatina/genética , Biblioteca de Genes , Genómica
19.
Biochem Biophys Res Commun ; 587: 58-62, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34864547

RESUMEN

Advancements in brain imaging techniques have emerged as a significant tool in detecting Alzheimer's disease (AD) progression. The complicated cascade of AD progression can be detected using radio imaging, especially with Positron emission tomography (PET). The review focus on recently introduced investigational PET tracers targeting neurofibrillary tau aggregates found typically in AD. Herein, we also address the use of different PET tracers and the clinical implementation of established and newer generation tracers. This review also intends to discuss the importance of several PET radiotracers and challenges in PET imaging.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Radioisótopos/química , Radiofármacos/química , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/análisis , Péptidos beta-Amiloides/química , Progresión de la Enfermedad , Hipocampo/patología , Humanos , Ovillos Neurofibrilares/patología , Ovillos Neurofibrilares/ultraestructura , Tomografía de Emisión de Positrones/métodos , Corteza Prefrontal/patología , Agregado de Proteínas , Radioisótopos/administración & dosificación , Radioisótopos/clasificación , Radiofármacos/administración & dosificación , Radiofármacos/clasificación , Proteínas tau/análisis , Proteínas tau/química
20.
Planta ; 254(6): 125, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34807329

RESUMEN

MAIN CONCLUSION: The extrafloral nectaries of S. occidentalis were studied structurally and anatomically (at secretory and post-secretory developmental stages). Role of extrafloral nectaries as a common plant-adoptive characteristic in context to diversity and phylogenetic pattern was also speculated while exploring other collaborative evolutionary implications of this plant. Extrafloral nectaries (EFNs) are widespread and evolutionarily labile traits that have repeatedly and remarkably evolved in vascular plants. Morphological descriptions of the EFNs of certain plant species are common in the literature, but they rarely relate morphology with histology, gland distribution and secretory characteristics. Studies relating EFNs features, i.e., morphology and distribution with their differential visitation by insects, viz. ants and the cost of maintenance to the plants are important to understand the evolution of these glands. Therefore, in this study a morphological, anatomical (structure and ultrastructure) and secretory characterization of EFNs occurring on Senna occidentalis L. is made with the implications of gland attributes discussed from a functional perspective. S. occidentalis L. (Caesalpiniaceae) is an economically important species from industrial, medicinal and agricultural perspective. Observations from the result showed that shape of the EFNs (size 1-2 mm) ranged to globular, ovoid-conical, dome-shaped, fusiform or cylindrical with conical tip. The EFNs were sessile, positioned interpetiolar or seated at the base of petiole. Light and transmission electron microscopic studies showed the specific internal structures of the extrafloral nectary. Two developmental stages of the EFNs (secretory and post-secretory) were recognized. Our current understanding of the phylogenetic patterns of EFNs makes them powerful candidates for future work exploring the drivers of their evolutionary origins, shifts, and losses.


Asunto(s)
Hormigas , Senna , Animales , Filogenia , Néctar de las Plantas , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...