Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Infect Dis Ther ; 13(5): 1005-1017, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609668

RESUMEN

Ritonavir is a potent inhibitor of the cytochrome P450 3A4 enzyme and is commonly used as a pharmacokinetic (PK) enhancer in antiviral therapies because it increases bioavailability of concomitantly administered antivirals. Decades of experience with ritonavir-enhanced HIV therapies and, more recently, COVID-19 therapies demonstrate that boosting doses of ritonavir are well tolerated, with an established safety profile. The mechanisms of PK enhancement by ritonavir result in the potential for drug-drug interactions (DDIs) with several classes of drugs, thus making co-medication management an important consideration with enhanced antiviral therapies. However, rates of DDIs with contraindicated medications are low, suggesting these risks are manageable by infectious disease specialists who have experience with the use of PK enhancers. In this review, we provide an overview of ritonavir's mechanisms of action and describe approaches and resources available to mitigate adverse events and manage concomitant medication in both chronic and short-term settings.

2.
Clin Pharmacokinet ; 63(1): 27-42, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38177893

RESUMEN

Nirmatrelvir is a potent and selective inhibitor of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease that is used as an oral antiviral coronavirus disease 2019 (COVID-19) treatment. To sustain unbound systemic trough concentrations above the antiviral in vitro 90% effective concentration value (EC90), nirmatrelvir is coadministered with 100 mg of ritonavir, a pharmacokinetic enhancer. Ritonavir inhibits nirmatrelvir's cytochrome P450 (CYP) 3A4-mediated metabolism which results in renal elimination becoming the primary route of nirmatrelvir elimination when dosed concomitantly. Nirmatrelvir exhibits absorption-limited nonlinear pharmacokinetics. When coadministered with ritonavir in patients with mild-to-moderate COVID-19, nirmatrelvir reaches a maximum concentration of 3.43 µg/mL (11.7× EC90) in approximately 3 h on day 5 of dosing, with a geometric mean day 5 trough concentration of 1.57 µg/mL (5.4× EC90). Drug interactions with nirmatrelvir/ritonavir (PAXLOVIDTM) are primarily attributed to ritonavir-mediated CYP3A4 inhibition, and to a lesser extent CYP2D6 and P-glycoprotein inhibition. Population pharmacokinetics and quantitative systems pharmacology modeling support twice daily dosing of 300 mg/100 mg nirmatrelvir/ritonavir for 5 days, with a reduced 150 mg/100 mg dose for patients with moderate renal impairment. Rapid clinical development of nirmatrelvir/ritonavir in response to the emerging COVID-19 pandemic was enabled by innovations in clinical pharmacology research, including an adaptive phase 1 trial design allowing direct to pivotal phase 3 development, fluorine nuclear magnetic resonance spectroscopy to delineate absorption, distribution, metabolism, and excretion profiles, and innovative applications of model-informed drug development to accelerate development.


Asunto(s)
COVID-19 , Lactamas , Leucina , Nitrilos , Prolina , Ritonavir , Humanos , Ritonavir/farmacología , Ritonavir/uso terapéutico , Pandemias , Interacciones Farmacológicas , Antivirales/farmacología , Antivirales/uso terapéutico , Combinación de Medicamentos
3.
Clin Pharmacol Ther ; 115(1): 42-51, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37597239

RESUMEN

Nirmatrelvir is a potent and selective severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) main protease inhibitor. Nirmatrelvir co-packaged with ritonavir (as PAXLOVID) received US Food and Drug Administration (FDA) Emergency Use Authorization (EUA) on December 22, 2021, as an oral treatment for coronavirus disease 2019 (COVID-19) and subsequent new drug application approval on May 25, 2023. Pharmacokinetic (PK) capillary blood sampling at-home using Tasso-M20 micro-volumetric sampling device was implemented in the program, including three phase II/III outpatient and several clinical pharmacology studies supporting the EUA. The at-home sampling complemented venous blood sampling procedures to enrich the PK dataset, to decrease the need for patients' site visit for PK sampling, and to allow different sampling approaches for flexibility and convenience. To demonstrate concordance/equivalence, bridging between venous plasma and Tasso dried blood results was conducted by comparing concentrations and derived PK parameters from both sampling approaches. In addition, a two-compartment population PK model was utilized to bridge the plasma and Tasso data by estimating the PK parameters using blood-to-plasma ratio as a slope parameter. Operational challenges were successfully managed to implement at-home PK sampling in global phase II/III trials. Sample quality was generally very good with less than 3% samples deemed as "not usable" from over 800 samples collected in all the studies. Experience gained from sites and patients will guide future broader implementations.


Asunto(s)
Lactamas , Ritonavir , Estados Unidos , Humanos , Leucina , Atención Dirigida al Paciente
4.
J Clin Pharmacol ; 64(2): 145-154, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37751891

RESUMEN

Nirmatrelvir, a novel, potent, orally bioavailable severe acute respiratory syndrome coronavirus 2 main protease inhibitor, coadministered with ritonavir for pharmacokinetic (PK) enhancement is licensed for the treatment of mild to moderate COVID-19 in individuals at increased risk of progression to severe disease. Cytochrome P450 3A4 is the primary metabolic enzyme responsible for nirmatrelvir metabolism; however, when cytochrome P450 3A4 is inhibited by ritonavir, nirmatrelvir is primarily excreted, unchanged, in urine. Because of intended use of nirmatrelvir among individuals with hepatic impairment, this Phase 1 study (NCT05005312) evaluated the effects of hepatic impairment on nirmatrelvir PK parameters to assess the potential need for any dose adjustments in this population. Participants with normal hepatic function or moderate hepatic impairment (n = 8 each) were administered a single 100-mg nirmatrelvir dose, with 100 mg of ritonavir administered 12 hours before, together with, and 12 and 24 hours after nirmatrelvir. Nirmatrelvir median plasma concentrations and systemic exposure measured by area under the plasma concentration-time curve from time zero extrapolated to infinite time and maximum observed plasma concentration values were comparable in both groups. Nirmatrelvir/ritonavir had an acceptable safety profile in both groups, and no clinically significant changes in laboratory measurements, vital signs, or electrocardiogram assessments were observed. Based on these results, no dose adjustment is deemed necessary in patients with moderate hepatic impairment and, by extension, in patients with mild hepatic impairment.


Asunto(s)
COVID-19 , Hepatopatías , Humanos , Ritonavir , Inhibidores de Proteasas/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Antivirales/farmacocinética , Hepatopatías/metabolismo , Sistema Enzimático del Citocromo P-450
5.
CPT Pharmacometrics Syst Pharmacol ; 12(12): 1897-1910, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37803876

RESUMEN

Protease inhibitor nirmatrelvir coadministered with ritonavir as a pharmacokinetic enhancer (PAXLOVID™; Pfizer Inc) became the first orally bioavailable antiviral agent granted Emergency Use Authorization in the United States in patients ≥12 years old with mild to moderate coronavirus disease 2019 (COVID-19). This population pharmacokinetic analysis used pooled plasma nirmatrelvir concentrations from eight completed phase I and II/III studies to characterize nirmatrelvir pharmacokinetics when coadministered with ritonavir in adults with/without COVID-19. Influence of covariates (e.g., formulation, dose, COVID-19) was examined using a stepwise forward selection (α = 0.05) and backward elimination (α = 0.001) approach. Simulations with 5000 subjects for each age and weight group and renal function category were performed to support dosing recommendations of nirmatrelvir/ritonavir for adults with COVID-19 and guide dose adjustments for specific patient populations (e.g., renal insufficiency, pediatrics). The final model was a two-compartment model with first-order absorption, including allometric scaling of body weight and dose-dependent absorption (power function on relative bioavailability). Nirmatrelvir clearance (CL) increased proportionally to body surface area-normalized creatinine CL (nCLCR) up to 70 ml/min/1.73 m2 and was independent of nCLCR above the breakpoint. Significant covariates included carbamazepine or itraconazole coadministration as markers for drug interactions, COVID-19 on CL, formulation on relative bioavailability, and age on central volume of distribution. Simulation results support current dosing recommendations of nirmatrelvir/ritonavir 300/100 mg twice daily (b.i.d.) in adults with normal renal function or mild impairment and pediatrics (12 to <18 years) weighing ≥40 kg and nirmatrelvir/ritonavir 150/100 mg b.i.d. in adults with moderate renal impairment.


Asunto(s)
COVID-19 , Ritonavir , Adulto , Humanos , Niño , Antivirales , Benzodiazepinas
6.
J Phys Condens Matter ; 35(11)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36599167

RESUMEN

We investigate the electronic structure of highly conducting perovskite SrMoO3using valence band photoemission spectroscopy and electronic structure calculations. Large intensity corresponding to coherent feature close to Fermi level is captured by density functional theory (DFT) calculation. An additional satellite at ∼3 eV binding energy remains absent in DFT, hybrid functional (DFT-hybrid) and dynamical mean field theory (DFT + DMFT) calculations. Mo 4dspectra obtained with different surface sensitive photoemission spectroscopy suggest different surface and bulk electronic structures. DFT + DMFT spectral function is in excellent agreement with the coherent feature in the bulk Mo 4dspectra, revealing moderate electron correlation strength. A large plasmon satellite and signature of strong electron correlation are observed in the surface spectra, while the bulk spectra exhibits aweakplasmon satellite.

7.
J Phys Condens Matter ; 35(9)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36575860

RESUMEN

In this work, we have investigated the precursor effects to superconductivity in BaPb0.75Bi0.25O3using temperature dependent resistivity, x-ray diffraction technique and photoemission spectroscopy. The present compound exhibits superconductivity around 11 K (TC). The synthesis procedure adopted is much simpler as compared to the procedure available in the literature. In the temperature range (10 K-25 K) i.e. aboveTC, our results show an increase in both the orthorhombic and tetragonal strain. The well screened features observed in Bi and Pb 4f7/2core levels are indicative of the metallic nature of the sample. The compound exhibits finite intensity at the Fermi level at 300 K and this intensity decreases with decrease in temperature and develops into a pseudogap; the energy dependence of the spectral density of states suggests disordered metallic state. Furthermore, our band structure calculations reveal that the structural transition upon Pb doping results in the closing of the band gap at the Fermi level.

8.
Front Med (Lausanne) ; 9: 955930, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405589

RESUMEN

Background: Recent studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reveal that Omicron variant BA.1 and sub-lineages have revived the concern over resistance to antiviral drugs and vaccine-induced immunity. The present study aims to analyze the clinical profile and genome characterization of the SARS-CoV-2 variant in eastern Uttar Pradesh (UP), North India. Methods: Whole-genome sequencing (WGS) was conducted for 146 SARS-CoV-2 samples obtained from individuals who tested coronavirus disease 2019 (COVID-19) positive between the period of 1 January 2022 and 24 February 2022, from three districts of eastern UP. The details regarding clinical and hospitalized status were captured through telephonic interviews after obtaining verbal informed consent. A maximum-likelihood phylogenetic tree was created for evolutionary analysis using MEGA7. Results: The mean age of study participants was 33.9 ± 13.1 years, with 73.5% accounting for male patients. Of the 98 cases contacted by telephone, 30 (30.6%) had a travel history (domestic/international), 16 (16.3%) reported having been infected with COVID-19 in past, 79 (80.6%) had symptoms, and seven had at least one comorbidity. Most of the sequences belonged to the Omicron variant, with BA.1 (6.2%), BA.1.1 (2.7%), BA.1.1.1 (0.7%), BA.1.1.7 (5.5%), BA.1.17.2 (0.7%), BA.1.18 (0.7%), BA.2 (30.8%), BA.2.10 (50.7%), BA.2.12 (0.7%), and B.1.617.2 (1.3%) lineages. BA.1 and BA.1.1 strains possess signature spike mutations S:A67V, S:T95I, S:R346K, S:S371L, S:G446S, S:G496S, S:T547K, S:N856K, and S:L981F, and BA.2 contains S:V213G, S:T376A, and S:D405N. Notably, ins214EPE (S1- N-Terminal domain) mutation was found in a significant number of Omicron BA.1 and sub-lineages. The overall Omicron BA.2 lineage was observed in 79.5% of women and 83.2% of men. Conclusion: The current study showed a predominance of the Omicron BA.2 variant outcompeting the BA.1 over a period in eastern UP. Most of the cases had a breakthrough infection following the recommended two doses of vaccine with four in five cases being symptomatic. There is a need to further explore the immune evasion properties of the Omicron variant.

9.
Clin Pharmacol Ther ; 112(6): 1201-1206, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35678736

RESUMEN

Typically human absorption, distribution, metabolism, and excretion (ADME) studies are executed using radiolabeled (e.g., carbon-14) material, the synthesis of which is a time-consuming activity. In this study, we were able to assess the metabolism and excretion of unlabeled nirmatrelvir (PF-07321332) within the first-in-human study via a novel application of quantitative fluorine (19 F) nuclear magnetic resonance (NMR) spectroscopy in place of a standard radiolabel ADME study. Six healthy participants received a single 300-mg oral dose of nirmatrelvir (in combination with ritonavir), and excreta were collected up to 10 days. Virtually all drug-related material was recovered within 5 days, and mass balance was achieved with 84.9 ± 8.9% (range = 70.7-95.5%) of the administered dose recovered in urine and feces. The excretion of fluorine-containing material in urine and feces was 47.0% and 33.7%, respectively. Unchanged nirmatrelvir represented 82.5% of the normalized drug-related material with a carboxylic acid metabolite M5, derived from hydrolysis of the P2 amide bond, present at 12.1% of dose. Nirmatrelvir was the only drug-related entity observed in plasma. Approximately 4.2% of the dose was excreted as metabolite M8 (measured by liquid chromatography-mass spectrometry), which was 19 F NMR silent due to hydrolysis of the trifluoroacetamide moiety. Hydrolysis of nirmatrelvir to M5 and M8 was shown to occur in cultures of human gut microflora. This successful demonstration of quantitative 19 F NMR spectroscopy to establish the mass-balance, excretion, and metabolic profile of nirmatrelvir offers an advantageous means to execute human ADME studies for fluorine-containing compounds early in drug development.


Asunto(s)
Desarrollo de Medicamentos , Flúor , Humanos , Radioisótopos de Carbono , Espectroscopía de Resonancia Magnética , Administración Oral
10.
Clin Pharmacol Drug Dev ; 11(7): 815-825, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35506501

RESUMEN

Zimlovisertib (PF-06650833) is a selective, reversible inhibitor of interleukin-1 receptor-associated kinase 4 (IRAK4) with anti-inflammatory effects. This phase 1, open-label, fixed-sequence, two-period, single-dose study aimed to evaluate the mass balance and excretion rate of zimlovisertib in healthy male participants using a 14 C-microtracer approach. All six participants received 300 mg 14 C-zimlovisertib with lower radioactivity per mass unit orally in Period A, then unlabeled zimlovisertib 300 mg orally and 14 C-zimlovisertib 135 µg intravenously (IV) in Period B. Study objectives included extent and rate of excretion of 14 C-zimlovisertib, pharmacokinetics, and safety and tolerability of oral and IV zimlovisertib. Total radioactivity recovered in urine and feces was 82.4% ± 6.8% (urine 23.1% ± 12.3%, feces 59.3% ± 9.7%) in Period A. Zimlovisertib was absorbed rapidly following oral administration, with the fraction absorbed estimated to be 44%. Absolute oral bioavailability of the 300-mg dose was 17.4% (90% confidence interval 14.1%, 21.5%) using the dose-normalized area under the concentration-time curve from time 0 to infinity. There were no deaths, serious adverse events (AEs), severe AEs, discontinuations or dose reductions due to AEs, and no clinically significant laboratory abnormalities. These results demonstrate that zimlovisertib had low absolute oral bioavailability and low absorption (<50%).


Asunto(s)
Disponibilidad Biológica , Administración Oral , Heces , Voluntarios Sanos , Humanos , Masculino
11.
Cell Rep ; 39(8): 110856, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35613581

RESUMEN

Upon binding double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) is activated and initiates the cGAS-stimulator of IFN genes (STING)-type I interferon pathway. DEAD-box helicase 41 (DDX41) is a DEAD-box helicase, and mutations in DDX41 cause myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). Here, we show that DDX41-knockout (KO) cells have reduced type I interferon production after DNA virus infection. Unexpectedly, activations of cGAS and STING are affected in DDX41 KO cells, suggesting that DDX41 functions upstream of cGAS. The recombinant DDX41 protein exhibits ATP-dependent DNA-unwinding activity and ATP-independent strand-annealing activity. The MDS/AML-derived mutant R525H has reduced unwinding activity but retains normal strand-annealing activity and stimulates greater cGAS dinucleotide-synthesis activity than wild-type DDX41. Overexpression of R525H in either DDX41-deficient or -proficient cells results in higher type I interferon production. Our results have led to the hypothesis that DDX41 utilizes its unwinding and annealing activities to regulate the homeostasis of dsDNA and single-stranded DNA (ssDNA), which, in turn, regulates cGAS-STING activation.


Asunto(s)
Infecciones por Virus ADN , Interferón Tipo I , Leucemia Mieloide Aguda , Adenosina Trifosfato , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN/metabolismo , Humanos , Interferón Tipo I/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal
12.
J Am Acad Dermatol ; 87(2): 333-342, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35398218

RESUMEN

BACKGROUND: Psoriasis treatments lack durable efficacy and have inconvenient administration, highlighting the need for new therapies. OBJECTIVE: To evaluate the efficacy and safety of tyrosine kinase 2 inhibitor, PF-06826647, in moderate-to-severe plaque psoriasis. METHODS: This phase 2b, double-blind study randomized participants to oral, once-daily PF-06826647 (1:1:2:2:2) 50:100:200:400 mg:placebo (16 weeks), then 200 or 400 mg (24 weeks) (NCT03895372). The primary end point was a proportion of participants achieving psoriasis area severity index (PASI) 90 at week 16. Secondary end points (PASI50/75/90/100; Physician's Global Assessment) and safety were assessed to week 40. RESULTS: Overall, 178 participants were treated. A significantly greater proportion of participants (risk difference % [90% CI]) achieved PASI90 in the 200-mg (33.0 [18.0, 47.1], P = .0004) and 400-mg (46.5 [30.6, 60.6], P < .0001; week 16) groups versus placebo. Significant increases from placebo were observed for all secondary end points (200 and 400 mg; weeks 6-16; P < .05); increases were evident to week 40 (categorical data). PF-06826647 was well tolerated and most treatment-emergent adverse events were mild/moderate. Eighteen participants discontinued due to treatment-emergent adverse events (14 arising from laboratory abnormalities). LIMITATIONS: Limitations included the large proportion of White males and non-placebo-controlled extension. CONCLUSION: PF-06826647 200 and 400 mg once daily showed significant efficacy versus placebo at week 16 and was well tolerated over 40 weeks.


Asunto(s)
Inhibidores de Proteínas Quinasas , Psoriasis , TYK2 Quinasa , Método Doble Ciego , Humanos , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Psoriasis/diagnóstico , Psoriasis/tratamiento farmacológico , Índice de Severidad de la Enfermedad , TYK2 Quinasa/antagonistas & inhibidores , Resultado del Tratamiento
13.
Clin Pharmacol Ther ; 112(1): 101-111, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35388471

RESUMEN

Coronavirus disease 2019 (COVID-19) is a continued leading cause of hospitalization and death. Safe, efficacious COVID-19 antivirals are needed urgently. Nirmatrelvir (PF-07321332), the first orally bioavailable, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) Mpro inhibitor against the coronaviridae family, has demonstrated potent preclinical antiviral activity and benign safety profile. We report safety, tolerability, and pharmacokinetic data of nirmatrelvir with and without ritonavir as a pharmacokinetic enhancer, from an accelerated randomized, double-blind, placebo-controlled, phase I study. Two interleaving single-ascending dose (SAD) cohorts were evaluated in a three-period crossover. Multiple-ascending dose (MAD) with nirmatrelvir/ritonavir twice daily (b.i.d.) dosing was evaluated over 10 days in five parallel cohorts. Safety was assessed, including in a supratherapeutic exposure cohort. Dose and dosing regimen for clinical efficacy evaluation in phase II/III clinical trials were supported by integrating modeling and simulations of SAD/MAD data with nonclinical data and a quantitative systems pharmacology model (QSP). In SAD, MAD, and supratherapeutic exposure cohorts, nirmatrelvir/ritonavir was safe and well-tolerated. Nirmatrelvir exposure and half-life were considerably increased by ritonavir, enabling selection of nirmatrelvir/ritonavir dose and regimen for phase II/III trials (300/100 mg b.i.d.), to achieve concentrations continuously above those required for 90% inhibition of viral replication in vitro. The QSP model suggested that a 5-day regimen would significantly decrease viral load in SARS-CoV-2-infected patients which may prevent development of severe disease, hospitalization, and death. In conclusion, an innovative and seamless trial design expedited establishment of phase I safety and pharmacokinetics of nirmatrelvir/ritonavir, enabling high confidence in phase II/III dose selection and accelerated pivotal trials' initiation (NCT04756531).


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Antivirales/farmacocinética , Humanos , Lactamas , Leucina , Nitrilos , Prolina , Ritonavir , SARS-CoV-2
14.
Methods ; 204: 286-299, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35257897

RESUMEN

DDX43 (DEAD-box helicase 43), also known as HAGE (helicase antigen gene), is a member of the DEAD-box protein family. It contains a K homology (KH) domain in its N terminus, a helicase core domain in its C terminus, and a flexible linker domain in between. DDX43 expression is low or undetectable in normal tissue, but is overexpressed in many tumors; therefore, it is considered a potential target molecule for cancer therapy. We, along with other groups, have shown that DDX43 is an ATP-dependent RNA and DNA helicase, and the KH domain is required for its ATPase and unwinding activity. Electrophoretic mobility shift assay (EMSA), SELEX (systematic evolution of ligands by exponential enrichment), chromatin immunoprecipitation (ChIP)-seq, crosslinking immunoprecipitation (CLIP)-seq, and nuclear magnetic resonance (NMR) showed that the KH domain prefers to bind pyrimidine-rich ssDNA and ssRNA, such as TTGT in the promoter regions of genes. Moreover, the KH domain facilitates the substrate specificity and processivity of the DDX43 helicase. No animal model has been generated for DDX43; cellular studies have revealed that DDX43 has roles in piRNA amplification, tumorigenesis, RAS signaling, and innate immunity. Structural and functional studies of DDX43 will not only advance our understanding of DEAD-box helicases and KH domains, but also shed light on the application of DDX43 as therapeutics, where its key binding sites can be targeted by small molecules and natural products as an alternative approach in treating DDX43 overexpressed cancers.


Asunto(s)
ARN Helicasas DEAD-box , ARN , Sitios de Unión , ARN Helicasas DEAD-box/química , ADN Helicasas/metabolismo , ARN/química , Especificidad por Sustrato
15.
Drug Metab Dispos ; 50(5): 576-590, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35153195

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3C-like protease inhibitor PF-07321332 (nirmatrelvir), in combination with ritonavir (Paxlovid), was recently granted emergency use authorization by multiple regulatory agencies for the treatment of coronavirus disease 2019 (COVID-19) in adults and pediatric patients. Disposition studies on nirmatrelvir in animals and in human reagents, which were used to support clinical studies, are described herein. Plasma clearance was moderate in rats (27.2 ml/min per kg) and monkeys (17.1 ml/min per kg), resulting in half-lives of 5.1 and 0.8 hours, respectively. The corresponding oral bioavailability was moderate in rats (34%-50%) and low in monkeys (8.5%), primarily due to oxidative metabolism along the gastrointestinal tract in this species. Nirmatrelvir demonstrated moderate plasma protein binding in rats, monkeys, and humans with mean unbound fractions ranging from 0.310 to 0.478. The metabolism of nirmatrelvir was qualitatively similar in liver microsomes and hepatocytes from rats, monkeys, and humans; prominent metabolites arose via cytochrome P450 (CYP450)-mediated oxidations on the P1 pyrrolidinone ring, P2 6,6-dimethyl-3-azabicyclo[3.1.0]hexane, and the tertiary-butyl group at the P3 position. Reaction phenotyping studies in human liver microsomes revealed that CYP3A4 was primarily responsible (fraction metabolized = 0.99) for the oxidative metabolism of nirmatrelvir. Minor clearance mechanisms involving renal and biliary excretion of unchanged nirmatrelvir were also noted in animals and in sandwich-cultured human hepatocytes. Nirmatrelvir was a reversible and time-dependent inhibitor as well as inducer of CYP3A activity in vitro. First-in-human pharmacokinetic studies have demonstrated a considerable boost in the oral systemic exposure of nirmatrelvir upon coadministration with the CYP3A4 inhibitor ritonavir, consistent with the predominant role of CYP3A4 in nirmatrelvir metabolism. SIGNIFICANCE STATEMENT: The manuscript describes the preclinical disposition, metabolism, and drug-drug interaction potential of PF-07321332 (nirmatrelvir), an orally active peptidomimetic-based inhibitor of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3CL protease, which has been granted emergency use authorization by multiple regulatory agencies around the globe for the treatment of coronavirus disease 2019 (COVID-19) in COVID-19-positive adults and pediatric patients who are at high risk for progression to severe COVID-19, including hospitalization or death.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Administración Oral , Animales , Niño , Citocromo P-450 CYP3A/metabolismo , Haplorrinos , Humanos , Lactamas , Leucina , Microsomas Hepáticos/metabolismo , Nitrilos , Péptido Hidrolasas/metabolismo , Prolina , Ratas , Ritonavir/metabolismo
16.
Front Oncol ; 12: 1087989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761420

RESUMEN

DEAD/H-box helicases are implicated in virtually every aspect of RNA metabolism, including transcription, pre-mRNA splicing, ribosomes biogenesis, nuclear export, translation initiation, RNA degradation, and mRNA editing. Most of these helicases are upregulated in various cancers and mutations in some of them are associated with several malignancies. Lately, synthetic lethality (SL) and synthetic dosage lethality (SDL) approaches, where genetic interactions of cancer-related genes are exploited as therapeutic targets, are emerging as a leading area of cancer research. Several DEAD/H-box helicases, including DDX3, DDX9 (Dbp9), DDX10 (Dbp4), DDX11 (ChlR1), and DDX41 (Sacy-1), have been subjected to SL analyses in humans and different model organisms. It remains to be explored whether SDL can be utilized to identity druggable targets in DEAD/H-box helicase overexpressing cancers. In this review, we analyze gene expression data of a subset of DEAD/H-box helicases in multiple cancer types and discuss how their SL/SDL interactions can be used for therapeutic purposes. We also summarize the latest developments in clinical applications, apart from discussing some of the challenges in drug discovery in the context of targeting DEAD/H-box helicases.

17.
Science ; 374(6575): 1586-1593, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34726479

RESUMEN

The worldwide outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. Alongside vaccines, antiviral therapeutics are an important part of the healthcare response to countering the ongoing threat presented by COVID-19. Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2 main protease inhibitor with in vitro pan-human coronavirus antiviral activity and excellent off-target selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse-adapted SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell potency in a phase 1 clinical trial in healthy human participants.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Lactamas/farmacología , Lactamas/uso terapéutico , Leucina/farmacología , Leucina/uso terapéutico , Nitrilos/farmacología , Nitrilos/uso terapéutico , Prolina/farmacología , Prolina/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Inhibidores de Proteasa Viral/farmacología , Inhibidores de Proteasa Viral/uso terapéutico , Administración Oral , Animales , COVID-19/virología , Ensayos Clínicos Fase I como Asunto , Coronavirus/efectos de los fármacos , Modelos Animales de Enfermedad , Quimioterapia Combinada , Humanos , Lactamas/administración & dosificación , Lactamas/farmacocinética , Leucina/administración & dosificación , Leucina/farmacocinética , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Nitrilos/administración & dosificación , Nitrilos/farmacocinética , Prolina/administración & dosificación , Prolina/farmacocinética , Ensayos Clínicos Controlados Aleatorios como Asunto , Ritonavir/administración & dosificación , Ritonavir/uso terapéutico , SARS-CoV-2/fisiología , Inhibidores de Proteasa Viral/administración & dosificación , Inhibidores de Proteasa Viral/farmacocinética , Replicación Viral/efectos de los fármacos
18.
J Phys Condens Matter ; 34(4)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34673565

RESUMEN

We investigate the role of electron correlation in the electronic structure of honeycomb lattice Li2RuO3using photoemission spectroscopy and band structure calculations. Monoclinic Li2RuO3having Ru network as honeycomb lattice undergoes magneto-structural transition atTc∼ 540 K from high temperature phaseC2/mto low temperature dimerized phaseP21/m. Room temperature valence band photoemission spectra reveal an insulating ground state with no intensity at Fermi level (EF). Ru 4dband extracted from high and low photon energy valence band photoemission spectra reveal that the surface and bulk electronic structures are very similar in this system. Band structure calculations using generalized gradient approximation leads to metallic ground state while screened hybrid (YS-PBE0) functional reveals opening up of a gap in almost degeneratedzx/dyzorbitals, whereasdxyorbital is already gapped. Ru 3dcore level spectra with prominent unscreened feature provides direct evidence of strong electron correlation among Ru 4delectrons which is also manifested by |E-EF|2dependence of spectral density of states in the vicinity ofEFin the high-resolution spectra, establishing Li2RuO3as Mott insulator.

19.
J Phys Condens Matter ; 33(18)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33752182

RESUMEN

We investigate the electronic structure of ternary palladatesAPd3O4(A= Sr, Ca) using valence band photoemission spectroscopy and band structure calculations. Energy positions of various features and overall width of the experimental valence band spectra are well captured by band structure calculations using hybrid functional. Band structure calculations within local density approximations lead to metallic ground state while the calculations using hybrid functional provide band gap of 0.25 eV and 0.22 eV for CaPd3O4and SrPd3O4respectively, suggesting moderate to strong electron correlation strength in these narrow band gap semiconducting palladates. High resolution spectra reveal negligibly small intensity at Fermi level,EF, for parent compounds, while hole doped SrPd3O4(by 15% Li substitution at Sr site) exhibits a Fermi cut-off suggesting metallic character in contrast to semiconducting transport. These observations reveal the importance of localization of electrons in case where the Fermi edge falls in the mobility edge.

20.
J Pers Med ; 11(2)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503824

RESUMEN

A tightly regulated protein quality control (PQC) system maintains a healthy balance between correctly folded and misfolded protein species. This PQC system work with the help of a complex network comprised of molecular chaperones and proteostasis. Any intruder, especially environmental pollutants, disrupt the PQC network and lead to PQCs disruption, thus generating damaged and infectious protein. These misfolded/unfolded proteins are linked to several diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and cataracts. Numerous studies on proteins misfolding and disruption of PQCs by environmental pollutants highlight the necessity of detailed knowledge. This review represents the PQCs network and environmental pollutants' impact on the PQC network, especially through the protein clearance system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA