Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
bioRxiv ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38766203

RESUMEN

High-content image-based assays have fueled significant discoveries in the life sciences in the past decade (2013-2023), including novel insights into disease etiology, mechanism of action, new therapeutics, and toxicology predictions. Here, we systematically review the substantial methodological advancements and applications of Cell Painting. Advancements include improvements in the Cell Painting protocol, assay adaptations for different types of perturbations and applications, and improved methodologies for feature extraction, quality control, and batch effect correction. Moreover, machine learning methods recently surpassed classical approaches in their ability to extract biologically useful information from Cell Painting images. Cell Painting data have been used alone or in combination with other - omics data to decipher the mechanism of action of a compound, its toxicity profile, and many other biological effects. Overall, key methodological advances have expanded Cell Painting's ability to capture cellular responses to various perturbations. Future advances will likely lie in advancing computational and experimental techniques, developing new publicly available datasets, and integrating them with other high-content data types.

2.
ArXiv ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38745696

RESUMEN

High-content image-based assays have fueled significant discoveries in the life sciences in the past decade (2013-2023), including novel insights into disease etiology, mechanism of action, new therapeutics, and toxicology predictions. Here, we systematically review the substantial methodological advancements and applications of Cell Painting. Advancements include improvements in the Cell Painting protocol, assay adaptations for different types of perturbations and applications, and improved methodologies for feature extraction, quality control, and batch effect correction. Moreover, machine learning methods recently surpassed classical approaches in their ability to extract biologically useful information from Cell Painting images. Cell Painting data have been used alone or in combination with other -omics data to decipher the mechanism of action of a compound, its toxicity profile, and many other biological effects. Overall, key methodological advances have expanded Cell Painting's ability to capture cellular responses to various perturbations. Future advances will likely lie in advancing computational and experimental techniques, developing new publicly available datasets, and integrating them with other high-content data types.

3.
Nat Methods ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594452

RESUMEN

The identification of genetic and chemical perturbations with similar impacts on cell morphology can elucidate compounds' mechanisms of action or novel regulators of genetic pathways. Research on methods for identifying such similarities has lagged due to a lack of carefully designed and well-annotated image sets of cells treated with chemical and genetic perturbations. Here we create such a Resource dataset, CPJUMP1, in which each perturbed gene's product is a known target of at least two chemical compounds in the dataset. We systematically explore the directionality of correlations among perturbations that target the same protein encoded by a given gene, and we find that identifying matches between chemical and genetic perturbations is a challenging task. Our dataset and baseline analyses provide a benchmark for evaluating methods that measure perturbation similarities and impact, and more generally, learn effective representations of cellular state from microscopy images. Such advancements would accelerate the applications of image-based profiling of cellular states, such as uncovering drug mode of action or probing functional genomics.

4.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38617315

RESUMEN

In profiling assays, thousands of biological properties are measured in a single test, yielding biological discoveries by capturing the state of a cell population, often at the single-cell level. However, for profiling datasets, it has been challenging to evaluate the phenotypic activity of a sample and the phenotypic consistency among samples, due to profiles' high dimensionality, heterogeneous nature, and non-linear properties. Existing methods leave researchers uncertain where to draw boundaries between meaningful biological response and technical noise. Here, we developed a statistical framework that uses the well-established mean average precision (mAP) as a single, data-driven metric to bridge this gap. We validated the mAP framework against established metrics through simulations and real-world data applications, revealing its ability to capture subtle and meaningful biological differences in cell state. Specifically, we used mAP to assess both phenotypic activity for a given perturbation (or a sample) as well as consistency within groups of perturbations (or samples) across diverse high-dimensional datasets. We evaluated the framework on different profile types (image, protein, and mRNA profiles), perturbation types (CRISPR gene editing, gene overexpression, and small molecules), and profile resolutions (single-cell and bulk). Our open-source software allows this framework to be applied to identify interesting biological phenomena and promising therapeutics from large-scale profiling data.

5.
Adv Mater ; : e2311559, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520395

RESUMEN

It is shown that structural disorder-in the form of anisotropic, picoscale atomic displacements-modulates the refractive index tensor and results in the giant optical anisotropy observed in BaTiS3, a quasi-1D hexagonal chalcogenide. Single-crystal X-ray diffraction studies reveal the presence of antipolar displacements of Ti atoms within adjacent TiS6 chains along the c-axis, and threefold degenerate Ti displacements in the a-b plane. 47/49Ti solid-state NMR provides additional evidence for those Ti displacements in the form of a three-horned NMR lineshape resulting from a low symmetry local environment around Ti atoms. Scanning transmission electron microscopy is used to directly observe the globally disordered Ti a-b plane displacements and find them to be ordered locally over a few unit cells. First-principles calculations show that the Ti a-b plane displacements selectively reduce the refractive index along the ab-plane, while having minimal impact on the refractive index along the chain direction, thus resulting in a giant enhancement in the optical anisotropy. By showing a strong connection between structural disorder with picoscale displacements and the optical response in BaTiS3, this study opens a pathway for designing optical materials with high refractive index and functionalities such as large optical anisotropy and nonlinearity.

7.
Chemphyschem ; : e202300953, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396282

RESUMEN

Chalcogenide perovskites are a class of materials with electronic and optoelectronic properties desirable for solar cells, infrared optics, and computing. The oxide counterparts of these chalcogenides have been studied extensively for their electrocatalytic and photoelectrochemical properties. As chalcogenide perovskites are more covalent, conductive, and stable, we hypothesize that they are more viable as electrocatalysts than oxide perovskites. The goal of this synthetic, experimental, and computational study is to examine the hydrogen evolution reaction (HER) activity of three Barium-based chalcogenides in perovskite and related structures: BaZrS3, BaTiS3, and BaVS3. Potential energy surfaces for hydrogen adsorption on surfaces of these materials are calculated using density functional theory and the computational hydrogen electrode model is used to contrast overpotentials with experiment. Although both experiments and computations agree that BaVS3 is the most active of the three materials, high overpotentials of these materials make them less viable than platinum for HER. Our work establishes a framework for future studies in the chemical and electrochemical properties of chalcogenide perovksites.

8.
Nat Commun ; 15(1): 1594, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383513

RESUMEN

Measuring the phenotypic effect of treatments on cells through imaging assays is an efficient and powerful way of studying cell biology, and requires computational methods for transforming images into quantitative data. Here, we present an improved strategy for learning representations of treatment effects from high-throughput imaging, following a causal interpretation. We use weakly supervised learning for modeling associations between images and treatments, and show that it encodes both confounding factors and phenotypic features in the learned representation. To facilitate their separation, we constructed a large training dataset with images from five different studies to maximize experimental diversity, following insights from our causal analysis. Training a model with this dataset successfully improves downstream performance, and produces a reusable convolutional network for image-based profiling, which we call Cell Painting CNN. We evaluated our strategy on three publicly available Cell Painting datasets, and observed that the Cell Painting CNN improves performance in downstream analysis up to 30% with respect to classical features, while also being more computationally efficient.


Asunto(s)
Redes Neurales de la Computación
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124049, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38394884

RESUMEN

Gasoline and diesel are the main petroleum products used for road transportation in India. Due to this reason, adulteration can be done by fraudsters using different miscible substances such as kerosene, turpentine, thinner, ethanol etc. In this work, Fourier transform infrared spectroscopy (FTIR) coupled with principal component analysis (PCA) and partial least square regression (PLSR) were used to investigate adulteration in petroleum products and to design an adulterant profiling. ATR-FTIR has an advantage over other traditional methods as it is less time-consuming and needs no extraction procedure. The samples used for the study were prepared by adding different volume of adulterant (0-20%) to standard diesel and gasoline samples. According to the results obtained from this study, ATR-FTIR spectroscopy proved to be the most comprehensible method for the detection of adulteration in diesel and gasoline fuels. Furthermore, the use of FTIR spectroscopy combined with PCA got best segregation of adulterated samples. The predictive model achieved a root mean square error of prediction of 0.477% and 0.592% for diesel and gasoline respectively.

10.
J Chem Inf Model ; 64(4): 1172-1186, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38300851

RESUMEN

Drug-induced cardiotoxicity (DICT) is a major concern in drug development, accounting for 10-14% of postmarket withdrawals. In this study, we explored the capabilities of chemical and biological data to predict cardiotoxicity, using the recently released DICTrank data set from the United States FDA. We found that such data, including protein targets, especially those related to ion channels (e.g., hERG), physicochemical properties (e.g., electrotopological state), and peak concentration in plasma offer strong predictive ability for DICT. Compounds annotated with mechanisms of action such as cyclooxygenase inhibition could distinguish between most-concern and no-concern DICT. Cell Painting features for ER stress discerned most-concern cardiotoxic from nontoxic compounds. Models based on physicochemical properties provided substantial predictive accuracy (AUCPR = 0.93). With the availability of omics data in the future, using biological data promises enhanced predictability and deeper mechanistic insights, paving the way for safer drug development. All models from this study are available at https://broad.io/DICTrank_Predictor.


Asunto(s)
Cardiotoxicidad , Desarrollo de Medicamentos , Humanos , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo
11.
Mol Biol Cell ; 35(3): mr2, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38170589

RESUMEN

Cell Painting assays generate morphological profiles that are versatile descriptors of biological systems and have been used to predict in vitro and in vivo drug effects. However, Cell Painting features extracted from classical software such as CellProfiler are based on statistical calculations and often not readily biologically interpretable. In this study, we propose a new feature space, which we call BioMorph, that maps these Cell Painting features with readouts from comprehensive Cell Health assays. We validated that the resulting BioMorph space effectively connected compounds not only with the morphological features associated with their bioactivity but with deeper insights into phenotypic characteristics and cellular processes associated with the given bioactivity. The BioMorph space revealed the mechanism of action for individual compounds, including dual-acting compounds such as emetine, an inhibitor of both protein synthesis and DNA replication. Overall, BioMorph space offers a biologically relevant way to interpret the cell morphological features derived using software such as CellProfiler and to generate hypotheses for experimental validation.


Asunto(s)
Replicación del ADN , Programas Informáticos , Fenotipo
12.
Adv Mater ; 36(19): e2312620, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38288906

RESUMEN

Vapor-pressure mismatched materials such as transition metal chalcogenides have emerged as electronic, photonic, and quantum materials with scientific and technological importance. However, epitaxial growth of vapor-pressure mismatched materials are challenging due to differences in the reactivity, sticking coefficient, and surface adatom mobility of the mismatched species constituting the material, especially sulfur containing compounds. Here, a novel approach is reported to grow chalcogenides-hybrid pulsed laser deposition-wherein an organosulfur precursor is used as a sulfur source in conjunction with pulsed laser deposition to regulate the stoichiometry of the deposited films. Epitaxial or textured thin films of sulfides with variety of structure and chemistry such as alkaline metal chalcogenides, main group chalcogenides, transition metal chalcogenides, and chalcogenide perovskites are demonstrated, and structural characterization reveal improvement in thin film crystallinity, and surface and interface roughness compared to the state-of-the-art. The growth method can be broadened to other vapor-pressure mismatched chalcogenides such as selenides and tellurides. This work opens up opportunities for broader epitaxial growth of chalcogenides, especially sulfide-based thin film technological applications.

13.
Nat Commun ; 15(1): 347, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184653

RESUMEN

The morphology of cells is dynamic and mediated by genetic and environmental factors. Characterizing how genetic variation impacts cell morphology can provide an important link between disease association and cellular function. Here, we combine genomic sequencing and high-content imaging approaches on iPSCs from 297 unique donors to investigate the relationship between genetic variants and cellular morphology to map what we term cell morphological quantitative trait loci (cmQTLs). We identify novel associations between rare protein altering variants in WASF2, TSPAN15, and PRLR with several morphological traits related to cell shape, nucleic granularity, and mitochondrial distribution. Knockdown of these genes by CRISPRi confirms their role in cell morphology. Analysis of common variants yields one significant association and nominate over 300 variants with suggestive evidence (P < 10-6) of association with one or more morphology traits. We then use these data to make predictions about sample size requirements for increasing discovery in cellular genetic studies. We conclude that, similar to molecular phenotypes, morphological profiling can yield insight about the function of genes and variants.


Asunto(s)
Células Madre Pluripotentes Inducidas , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Sitios de Carácter Cuantitativo/genética , Núcleo Celular , Forma de la Célula , Proteínas Mutantes
14.
Nat Cell Biol ; 26(1): 5-7, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38228822
15.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37745478

RESUMEN

High-throughput image-based profiling platforms are powerful technologies capable of collecting data from billions of cells exposed to thousands of perturbations in a time- and cost-effective manner. Therefore, image-based profiling data has been increasingly used for diverse biological applications, such as predicting drug mechanism of action or gene function. However, batch effects pose severe limitations to community-wide efforts to integrate and interpret image-based profiling data collected across different laboratories and equipment. To address this problem, we benchmarked seven high-performing scRNA-seq batch correction techniques, representing diverse approaches, using a newly released Cell Painting dataset, the largest publicly accessible image-based dataset. We focused on five different scenarios with varying complexity, and we found that Harmony, a mixture-model based method, consistently outperformed the other tested methods. Our proposed framework, benchmark, and metrics can additionally be used to assess new batch correction methods in the future. Overall, this work paves the way for improvements that allow the community to make best use of public Cell Painting data for scientific discovery.

16.
Cancer Causes Control ; 35(3): 465-475, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37843701

RESUMEN

INTRODUCTION: Brain metastasis (BM) is an aggressive complication with an extremely poor prognosis in patients with small-cell lung cancer (SCLC). A well-constructed prognostic model could help in providing timely survival consultation or optimizing treatments. METHODS: We analyzed clinical data from SCLC patients between 2000 and 2018 based on the Surveillance, Epidemiology, and End Results (SEER) database. We identified significant prognostic factors and integrated them using a multivariable Cox regression approach. Internal validation of the model was performed through a bootstrap resampling procedure. Model performance was evaluated based on the area under the curve (AUC) and calibration curve. RESULTS: A total of 2,454 SCLC patients' clinical data was collected from the database. It was determined that seven clinical parameters were associated with prognosis in SCLC patients with BM. A satisfactory level of discrimination was achieved by the predictive model, with 6-, 12-, and 18-month AUC values of 0.726, 0.707, and 0.737 in the training cohort; and 0.759, 0.742, and 0.744 in the validation cohort. As measured by survival rate probabilities, the calibration curve agreed well with actual observations. Furthermore, prognostic scores were found to significantly alter the survival curves of different risk groups. We then deployed the prognostic model onto a website server so that users can access it easily. CONCLUSIONS: In this study, a nomogram and a web-based predictor were developed to predict overall survival in SCLC patients with BM. It may assist physicians in making informed clinical decisions and determining the best treatment plan for each patient.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Nomogramas , Bases de Datos Factuales , Internet , Pronóstico , Programa de VERF
17.
ArXiv ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38045474

RESUMEN

Technological advances in high-throughput microscopy have facilitated the acquisition of cell images at a rapid pace, and data pipelines can now extract and process thousands of image-based features from microscopy images. These features represent valuable single-cell phenotypes that contain information about cell state and biological processes. The use of these features for biological discovery is known as image-based or morphological profiling. However, these raw features need processing before use and image-based profiling lacks scalable and reproducible open-source software. Inconsistent processing across studies makes it difficult to compare datasets and processing steps, further delaying the development of optimal pipelines, methods, and analyses. To address these issues, we present Pycytominer, an open-source software package with a vibrant community that establishes an image-based profiling standard. Pycytominer has a simple, user-friendly Application Programming Interface (API) that implements image-based profiling functions for processing high-dimensional morphological features extracted from microscopy images of cells. Establishing Pycytominer as a standard image-based profiling toolkit ensures consistent data processing pipelines with data provenance, therefore minimizing potential inconsistencies and enabling researchers to confidently derive accurate conclusions and discover novel insights from their data, thus driving progress in our field.

18.
bioRxiv ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37905146

RESUMEN

Drug-induced cardiotoxicity (DICT) is a major concern in drug development, accounting for 10-14% of postmarket withdrawals. In this study, we explored the capabilities of various chemical and biological data to predict cardiotoxicity, using the recently released Drug-Induced Cardiotoxicity Rank (DICTrank) dataset from the United States FDA. We analyzed a diverse set of data sources, including physicochemical properties, annotated mechanisms of action (MOA), Cell Painting, Gene Expression, and more, to identify indications of cardiotoxicity. We found that such data, including protein targets, especially those related to ion channels (such as hERG), physicochemical properties (such as electrotopological state) as well as peak concentration in plasma offer strong predictive ability as well as valuable insights into DICT. We also found compounds annotated with particular mechanisms of action, such as cyclooxygenase inhibition, could distinguish between most-concern and no-concern DICT compounds. Cell Painting features related to ER stress discern the most-concern cardiotoxic compounds from non-toxic compounds. While models based on physicochemical properties currently provide substantial predictive accuracy (AUCPR = 0.93), this study also underscores the potential benefits of incorporating more comprehensive biological data in future DICT predictive models. With the availability of - omics data in the future, using biological data promises enhanced predictability and delivers deeper mechanistic insights, paving the way for safer therapeutic drug development. All models and data used in this study are publicly released at https://broad.io/DICTrank_Predictor.

19.
Elife ; 122023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37753907

RESUMEN

Drug resistance is a challenge in anticancer therapy. In many cases, cancers can be resistant to the drug prior to exposure, that is, possess intrinsic drug resistance. However, we lack target-independent methods to anticipate resistance in cancer cell lines or characterize intrinsic drug resistance without a priori knowledge of its cause. We hypothesized that cell morphology could provide an unbiased readout of drug resistance. To test this hypothesis, we used HCT116 cells, a mismatch repair-deficient cancer cell line, to isolate clones that were resistant or sensitive to bortezomib, a well-characterized proteasome inhibitor and anticancer drug to which many cancer cells possess intrinsic resistance. We then expanded these clones and measured high-dimensional single-cell morphology profiles using Cell Painting, a high-content microscopy assay. Our imaging- and computation-based profiling pipeline identified morphological features that differed between resistant and sensitive cells. We used these features to generate a morphological signature of bortezomib resistance. We then employed this morphological signature to analyze a set of HCT116 clones (five resistant and five sensitive) that had not been included in the signature training dataset, and correctly predicted sensitivity to bortezomib in seven cases, in the absence of drug treatment. This signature predicted bortezomib resistance better than resistance to other drugs targeting the ubiquitin-proteasome system, indicating specificity for mechanisms of resistance to bortezomib. Our results establish a proof-of-concept framework for the unbiased analysis of drug resistance using high-content microscopy of cancer cells, in the absence of drug treatment.


Asunto(s)
Antineoplásicos , Microscopía , Bortezomib/farmacología , Ácidos Borónicos/farmacología , Ácidos Borónicos/uso terapéutico , Pirazinas/farmacología , Resistencia a Antineoplásicos , Línea Celular Tumoral , Antineoplásicos/farmacología , Inhibidores de Proteasoma/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Apoptosis
20.
bioRxiv ; 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37732209

RESUMEN

Widespread sequencing has yielded thousands of missense variants predicted or confirmed as disease-causing. This creates a new bottleneck: determining the functional impact of each variant - largely a painstaking, customized process undertaken one or a few genes or variants at a time. Here, we established a high-throughput imaging platform to assay the impact of coding variation on protein localization, evaluating 3,547 missense variants of over 1,000 genes and phenotypes. We discovered that mislocalization is a common consequence of coding variation, affecting about one-sixth of all pathogenic missense variants, all cellular compartments, and recessive and dominant disorders alike. Mislocalization is primarily driven by effects on protein stability and membrane insertion rather than disruptions of trafficking signals or specific interactions. Furthermore, mislocalization patterns help explain pleiotropy and disease severity and provide insights on variants of unknown significance. Our publicly available resource will likely accelerate the understanding of coding variation in human diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA