Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Front Immunol ; 15: 1387903, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234241

RESUMEN

The gastrointestinal (GI) tract redox environment, influenced by commensal microbiota and bacterial-derived metabolites, is crucial in shaping T-cell responses. Specifically, metabolites from gut microbiota (GM) exhibit robust anti-inflammatory effects, fostering the differentiation and regulation of CD8+ tissue-resident memory (TRM) cells, mucosal-associated invariant T (MAIT) cells, and stabilizing gut-resident Treg cells. Nitric oxide (NO), a pivotal redox mediator, emerges as a central regulator of T-cell functions and gut inflammation. NO impacts the composition of the gut microbiome, driving the differentiation of pro-inflammatory Th17 cells and exacerbating intestinal inflammation, and supports Treg expansion, showcasing its dual role in immune homeostasis. This review delves into the complex interplay between GI redox balance and GM metabolites, elucidating their profound impact on T-cell regulation. Additionally, it comprehensively emphasizes the critical role of GI redox, particularly reactive oxygen species (ROS) and NO, in shaping T-cell phenotype and functions. These insights offer valuable perspectives on disease mechanisms and potential therapeutic strategies for conditions associated with oxidative stress. Understanding the complex cross-talk between GI redox, GM metabolites, and T-cell responses provides valuable insights into potential therapeutic avenues for immune-mediated diseases, underscoring the significance of maintaining GI redox balance for optimal immune health.


Asunto(s)
Microbioma Gastrointestinal , Oxidación-Reducción , Humanos , Microbioma Gastrointestinal/inmunología , Animales , Especies Reactivas de Oxígeno/metabolismo , Óxido Nítrico/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-39189801

RESUMEN

Human coronavirus (HCoV)-NL63 causes respiratory tract infections in humans and employs angiotensin-converting enzyme 2 (ACE2) as a receptor. We sought to establish a mouse model of HCoV-NL63 and determine if prior RV-A1B infection affected HCoV-NL63 replication. HCoV-NL63 was propagated in LLC-MK2 cells expressing human ACE2. RV-A1B was grown in HeLa-H1 cells. C57BL6/J or transgenic mice expressing human ACE2 were infected intranasally with sham LLC-MK2 cell supernatant or 1 x 105 TCID50 units HCoV-NL63. Wild-type mice were infected with 1 x 106 PFU RV-A1B. Lungs were assessed for vRNA, bronchoalveolar lavage (BAL) cells, histology, HCoV-NL63 non-structural protein 3 (nsp3), and host gene expression by next generation sequencing and qPCR. To evaluate sequential infections, mice were infected with RV-A1B followed by HCoV-NL63 infection four days later. We report that hACE2 mice infected with HCoV-NL63 showed evidence of replicative infection with increased levels of vRNA, BAL neutrophils and lymphocytes, peribronchial and perivascular infiltrates, and expression of nsp3. Viral replication peaked three days after infection and inflammation persisted six days after infection. HCoV-NL63-infected hACE2 mice showed increased mRNA expression of IFNs, IFN-stimulated proteins and pro-inflammatory cytokines. Infection with RV-A1B four days before HCoV-NL63 significantly decreased both HCoV-NL63 vRNA levels and airway inflammation. Mice infected with RV-A1B prior to HCoV-NL63 showed increased expression of antiviral proteins compared to sham-treated mice. In conclusion, we established a mouse model of HCoV-NL63 replicative infection characterized by relatively persistent viral replication and inflammation. Prior infection with RV-A1B reduced HCoV-NL63 replication and airway inflammation, indicative of viral interference.

3.
Neurooncol Adv ; 6(1): vdae121, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156619

RESUMEN

Background: While directionally rotating tumor-treating fields (TTF) therapy has garnered considerable clinical interest in recent years, there has been comparatively less focus on directionally non-rotating electric field therapy (dnEFT). Methods: We explored dnEFT generated through customized electrodes as a glioblastoma therapy in in vitro and in vivo preclinical models. The effects of dnEFT on tumor apoptosis and microglia/macrophages in the tumor microenvironment were tested using flow-cytometric and qPCR assays. Results: In vitro, dnEFT generated using a clinical-grade spinal cord stimulator showed antineoplastic activity against independent glioblastoma cell lines. In support of the results obtained using the clinical-grade electrode, dnEFT delivered through a customized, 2-electrode array induced glioblastoma apoptosis. To characterize this effect in vivo, a custom-designed 4-electrode array was fabricated such that tumor cells can be implanted into murine cerebrum through a center channel equidistant from the electrodes. After implantation with this array and luciferase-expressing murine GL261 glioblastoma cells, mice were randomized to dnEFT or placebo. Relative to placebo-treated mice, dnEFT reduced tumor growth (measured by bioluminescence) and prolonged survival (median survival gain of 6.5 days). Analysis of brain sections following dnEFT showed a notable increase in the accumulation of peritumoral macrophage/microglia with increased expression of M1 genes (IFNγ, TNFα, and IL-6) and decreased expression of M2 genes (CD206, Arg, and IL-10) relative to placebo-treated tumors. Conclusions: Our results suggest therapeutic potential in glioblastoma for dnEFT delivered through implanted electrodes, supporting the development of a proof-of-principle clinical trial using commercially available deep brain stimulator electrodes.

4.
Mucosal Immunol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147278

RESUMEN

Itaconate was initially identified as an antimicrobial compound produced by myeloid cells. Beyond its antimicrobial role, itaconate may also serve as a crucial metabolic and immune modulator. We therefore examined the roles of aconitate decarboxylase 1 (Acod1) and itaconate in house dust mite (HDM)-sensitized and -challenged mice, a model of T helper 2 (Th2)-driven allergic airways disease. HDM treatment induced lung Acod1 mRNA expression and bronchoalveolar lavage (BAL) itaconate levels in wild-type C57BL/6 mice. Acod1 knockout mice (Acod1-KO) with negligible BAL itaconate showed heightened HDM-induced type 2 cytokine expression, increased serum IgE, and enhanced recruitment of Th2 cells in the lung, indicating a shift towards a more pronounced Th2 immune response. Acod1-KO mice also showed increased eosinophilic airway inflammation and hyperresponsiveness. Experiments in chimeric mice demonstrated that bone marrow from Acod1-KO mice is sufficient to increase type 2 cytokine expression in wild-type mice, and that restitution of bone marrow from wild type mice attenuates mRNA expression of Th2 cytokines in Acod1-KO mice. Specific deletion of Acod1 in lysozyme-secreting macrophages (LysM-cre+Acod1flox/flox) recapitulated the exaggerated phenotype observed in whole-body Acod1-KO mice. Adoptive transfer of Acod1-KO bone marrow-derived macrophages also increased lung mRNA expression of Th2 cytokines. In addition, treatment of Th2-polarized CD4 cells with itaconate impeded Th2 cell differentiation, as shown by reduced expression of Gata3 and decreased release of IL-5 and IL-13. Finally, public datasets of human samples show lower Acod1 expression in subjects with allergic asthma, consistent with a protective role of itaconate in asthma pathogenesis. Together, these data suggest that itaconate plays a protective, immunomodulatory role in limiting airway type 2 inflammation after allergen challenge by attenuating T cell responses.

5.
Dis Esophagus ; 37(8)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38580314

RESUMEN

Esophagectomy and lymphadenectomy have been the standard of care for patients at high risk (HR) of lymph node metastasis following a diagnosis of early esophageal adenocarcinoma (OAC) after endoscopic resection (ER). However, recent cohorts suggest lymph node metastasis risk is lower than initially estimated, suggesting organ preservation with close endoscopic follow-up is a viable option. We report on the 3- and 5-year risk of lymph node/distant metastasis among patients diagnosed with early HR-T1 OAC undergoing endoscopic follow-up. Patients diagnosed with HR-T1a or T1b OAC following ER at a tertiary referral center were identified and retrospectively analyzed from clinical records between 2010 and 2021. Patients were included if they underwent endoscopic follow-up after resection and were divided into HR-T1a, low risk (LR)-T1b and HR-T1b cohorts. After ER, 47 patients underwent endoscopic follow-up for early HR OAC. In total, 39 patients had an R0 resection with a combined 3- and 5-year risk of LN/distant metastasis of 6.9% [95% confidence interval (CI): 1.8-25] and 10.9% (95% CI, 3.6-30.2%), respectively. There was no significant difference when stratifying by histopathological subtype (P = 0.64). Among those without persistent luminal disease on follow-up, the 5-year risk was 4.1% (95% CI, 0.6-26.1). Two patients died secondary to OAC with an all-cause 5-year survival of 57.5% (95% CI, 39.5-71.9). The overall risk of LN/distant metastasis for early HR T1 OAC was lower than historically reported. Endoscopic surveillance can be a reasonable approach in highly selected patients with an R0 resection and complete luminal eradication, but clear, evidence-based surveillance guidelines are needed.


Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Esofagectomía , Esofagoscopía , Metástasis Linfática , Humanos , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/cirugía , Neoplasias Esofágicas/mortalidad , Adenocarcinoma/cirugía , Adenocarcinoma/secundario , Masculino , Femenino , Anciano , Estudios Retrospectivos , Persona de Mediana Edad , Estudios de Seguimiento , Escisión del Ganglio Linfático , Estadificación de Neoplasias , Factores de Riesgo
6.
Int J Adolesc Med Health ; 36(1): 105-110, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38349076

RESUMEN

OBJECTIVES: The present study was conducted to assess tobacco use and its effect on Oral Health-Related Quality of Life (OHRQoL) in Indian adolescents. METHODS: The present study was conducted on 1,600 13-14 year old adolescents from the schools of Modinagar, western Uttar Pradesh, India selected using stratified random sampling technique. OHRQoL was assessed using Hindi version of Child Perceptions Questionnaire (CPQ). Information regarding demographic, socioeconomic and oral health measures was also collected from the study participants. Tobacco use was assessed through questions derived from Global Youth Tobacco Survey (GYTS) questionnaire. Influence of predictor variables on tobacco use was evaluated using multilevel Poisson regression model. RESULTS: The tobacco use among the study population was 8.1 % and CPQ scores were 9.15±0.32. Adolescents who used tobacco had worse OHRQoL scores. Low socioeconomic status, presence of dental caries, absence of regular dental visits (last 6 months) were associated with increased regular consumption of tobacco products. CONCLUSIONS: The findings of the present study play an important role in planning public health strategies to improve adolescent OHRQoL and reduce tobacco use.


Asunto(s)
Caries Dental , Niño , Adolescente , Humanos , Caries Dental/epidemiología , Calidad de Vida , Uso de Tabaco/epidemiología , India/epidemiología , Salud Bucal
7.
JCI Insight ; 9(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38061015

RESUMEN

Infection of immature mice with rhinovirus (RV) induces an asthma-like phenotype consisting of type 2 inflammation, mucous metaplasia, eosinophilic inflammation, and airway hyperresponsiveness that is dependent on IL-25 and type 2 innate lymphoid cells (ILC2s). Doublecortin-like kinase 1-positive (DCLK1+) tuft cells are a major source of IL-25. We sought to determine the requirement of tuft cells for the RV-induced asthma phenotype in wild-type mice and mice deficient in Pou2f3, a transcription factor required for tuft cell development. C57BL/6J mice infected with RV-A1B on day 6 of life and RV-A2 on day 13 of life showed increased DCLK1+ tuft cells in the large airways. Compared with wild-type mice, RV-infected Pou2f3-/- mice showed reductions in IL-25 mRNA and protein expression, ILC2 expansion, type 2 cytokine expression, mucous metaplasia, lung eosinophils, and airway methacholine responsiveness. We conclude that airway tuft cells are required for the asthma phenotype observed in immature mice undergoing repeated RV infections. Furthermore, RV-induced tuft cell development provides a mechanism by which early-life viral infections could potentiate type 2 inflammatory responses to future infections.


Asunto(s)
Asma , Infecciones por Enterovirus , Animales , Ratones , Inmunidad Innata , Rhinovirus , Células en Penacho , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Asma/metabolismo , Inflamación , Fenotipo , Metaplasia
8.
J Exp Bot ; 75(2): 642-657, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37158162

RESUMEN

Lateral roots are a major component of root system architecture, and lateral root count (LRC) positively contributes to yield under drought in chickpea. To understand the genetic regulation of LRC, a biparental mapping population derived from two chickpea accessions having contrasting LRCs was genotyped by sequencing, and phenotyped to map four major quantitative trait loci (QTLs) contributing to 13-32% of the LRC trait variation. A single- nucleotide polymorphism tightly linked to the locus contributing to highest trait variation was located on the coding region of a gene (CaWIP2), orthologous to NO TRANSMITTING TRACT/WIP domain protein 2 (NTT/WIP2) gene of Arabidopsis thaliana. A polymorphic simple sequence repeat (SSR) in the CaWIP2 promoter showed differentiation between low versus high LRC parents and mapping individuals, suggesting its utility for marker-assisted selection. CaWIP2 promoter showed strong expression in chickpea apical root meristem and lateral root primordia. Expression of CaWIP2 under its native promoter in the Arabidopsis wip2wip4wip5 mutant rescued its rootless phenotype to produce more lateral roots than the wild-type plants, and led to formation of amyloplasts in the columella. CaWIP2 expression also induced the expression of genes that regulate lateral root emergence. Our study identified a gene-based marker for LRC which will be useful for developing drought-tolerant, high-yielding chickpea varieties.


Asunto(s)
Cicer , Sitios de Carácter Cuantitativo , Humanos , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Cicer/genética , Genotipo , Marcadores Genéticos
9.
Front Plant Sci ; 14: 1260596, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089807

RESUMEN

Liverworts represent one of six embryophyte lineages that have a Devonian, or earlier, origin, and are, at present, represented by only Marchantia polymorpha as an established model. Ricciocarpos natans is a secondarily monoicous aquatic liverwort with a worldwide distribution, being found on all continents except Antarctica. Ricciocarpos, a monotypic genus, forms a sister relationship with Riccia, the largest genus of the Marchantiopsida (~250 species), diverging from their common ancestor in the mid-Cretaceous. R. natans is typically found on small stagnant ponds and billabongs (seasonal pools), where it assumes a typical 'aquatic' form with long scale keels for stabilization on the water surface. But, as water bodies dry, plants may become stranded and subsequently shift their development to assume a 'terrestrial' form with rhizoids anchoring the plants to the substrate. We developed R. natans as a model to address a specific biological question - what are the genomic consequences when monoicy evolves from ancestral dioicy where sex is chromosomally determined? However, R. natans possesses other attributes that makes it a model to investigate a variety of biological processes. For example, it provides a foundation to explore the evolution of sexual systems within Riccia, where it appears monoicy may have evolved many times independently. Furthermore, the worldwide distribution of R. natans postdates plate tectonic driven continent separation, and thus, provides an intriguing model for population genomics. Finally, the transition from an aquatic growth form to a terrestrial growth form is mediated by the phytohormone abscisic acid, and represents convergent evolution with a number of other aquatic embryophytes, a concept we explore further here.

10.
Biomedicines ; 11(10)2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37892995

RESUMEN

Conventional and cancer immunotherapies encompass diverse strategies to address various cancer types and stages. However, combining these approaches often encounters limitations such as non-specific targeting, resistance development, and high toxicity, leading to suboptimal outcomes in many cancers. The tumor microenvironment (TME) is orchestrated by intricate interactions between immune and non-immune cells dictating tumor progression. An innovative avenue in cancer therapy involves leveraging small molecules to influence a spectrum of resistant cell populations within the TME. Recent discoveries have unveiled a phenotypically diverse cohort of innate-like T (ILT) cells and tumor hybrid cells (HCs) exhibiting novel characteristics, including augmented proliferation, migration, resistance to exhaustion, evasion of immunosurveillance, reduced apoptosis, drug resistance, and heightened metastasis frequency. Leveraging small-molecule immunomodulators to target these immune players presents an exciting frontier in developing novel tumor immunotherapies. Moreover, combining small molecule modulators with immunotherapy can synergistically enhance the inhibitory impact on tumor progression by empowering the immune system to meticulously fine-tune responses within the TME, bolstering its capacity to recognize and eliminate cancer cells. This review outlines strategies involving small molecules that modify immune cells within the TME, potentially revolutionizing therapeutic interventions and enhancing the anti-tumor response.

11.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37834408

RESUMEN

The mTOR signaling pathway plays a pivotal and intricate role in the pathogenesis of glioblastoma, driving tumorigenesis and proliferation. Mutations or deletions in the PTEN gene constitutively activate the mTOR pathway by expressing growth factors EGF and PDGF, which activate their respective receptor pathways (e.g., EGFR and PDGFR). The convergence of signaling pathways, such as the PI3K-AKT pathway, intensifies the effect of mTOR activity. The inhibition of mTOR has the potential to disrupt diverse oncogenic processes and improve patient outcomes. However, the complexity of the mTOR signaling, off-target effects, cytotoxicity, suboptimal pharmacokinetics, and drug resistance of the mTOR inhibitors pose ongoing challenges in effectively targeting glioblastoma. Identifying innovative treatment strategies to address these challenges is vital for advancing the field of glioblastoma therapeutics. This review discusses the potential targets of mTOR signaling and the strategies of target-specific mTOR inhibitor development, optimized drug delivery system, and the implementation of personalized treatment approaches to mitigate the complications of mTOR inhibitors. The exploration of precise mTOR-targeted therapies ultimately offers elevated therapeutic outcomes and the development of more effective strategies to combat the deadliest form of adult brain cancer and transform the landscape of glioblastoma therapy.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores mTOR , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
12.
J Biomol Struct Dyn ; : 1-12, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37732353

RESUMEN

Breast cancer is the second-leading cause of cancer-related death in women and the most often diagnosed malignancy. As the majority of chemotherapeutic medications are associated with recurrence, drug resistance, and side effects, scientists are shifting to beneficial agents for prevention and treatment, such as natural molecules. Myricetin 3-rhamnoside, a natural flavonol glycoside is known for diverse pharmacological activities but fewer reports describe the antiproliferative ability. The study aims to investigate the antiproliferative efficacy and target [hyaluronidase (HYAL) and ornithine decarboxylase (ODC), two poor breast cancer prognostic markers] modulatory potential of myricetin 3-rhamnoside on breast cancer cell lines using cytotoxicity assays and in silico docking, molecular dynamics analysis, cell-free and cell-based test methods. Myricetin 3-rhamnoside significantly retard the growth of MDA-MB-231 cells in SRB (IC50 88.64 ± 7.14 µM) and MTT (56.26 ± 8.50 µM) assay. It suppressed the transition of cells to the S-phase by inducing arrest in the G0/G1 phase with a fold change of 1.10. It shows robust binding interaction with ODC (-7.90 kcal/mol) and HYAL (-9.46 kcal/mol) and inhibits ODC (15.22 ± 2.61 µM) and HYAL (11.92 ± 2.89 µM) activity, but in a cell-based assay, the prominent response was observed against HYAL (21.46 ± 4.03 µM). Besides, it shows a 1.38 fold-down regulation of HYAL and forms a stable complex with HYAL. The binding pocket for myricetin 3-rhamnoside and the simulation pocket during the simulation are identical, indicating that myricetin 3-rhamnoside is actively blocking hyaluronidase. The computational prediction suggests it is a safe molecule. These observations imply that myricetin 3-rhamnoside could be used as a pharmacophore to design and synthesize a novel and safe agent for managing hormone-independent breast cancer.Communicated by Ramaswamy H. Sarma.

13.
Food Chem Toxicol ; 179: 113988, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37586679

RESUMEN

Cathepsin-D (CATD) inhibitors' design and development drawn interest due to their potential therapeutic applications in managing different cancer types, including lung cancer. This study investigated myricitrin, a flavonol-3-O-rhamnoside, for its binding affinity to CATD. Molecular docking experiments revealed a strong binding affinity (-7.8 kcal/mol). Molecular dynamics (MD) simulation confirmed the complex's stability, while enzyme activity studies showed inhibitory concentration (IC50) of 35.14 ± 6.08 µM (in cell-free) and 16.00 ± 3.48 µM (in cell-based) test systems. Expression analysis indicated downregulation of CATD with a fold change of 1.35. Myricitrin demonstrated antiproliferative effects on NCIH-520 cells [IC50: 64.11 µM in Sulphorhodamine B (SRB), 24.44 µM in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)], but did not affect healthy CHANG cells. It also prolonged the G2/M phase (at 10 µM: 1.19-fold; at 100 µM: 1.13-fold) and increased sub-diploid population by 1.35-fold. Based on the analysis done using SwissADME program, it is predicted that myricitrin is not a cytochrome p450s (CYPs) inhibitor, followed the rule of Ghose and found not permeable to the blood-brain barrier (BBB) which suggests it as a safe molecule. In summary, the experimental findings may establish the foundation for myricitrin and its analogues to be used therapeutically in CATD-mediated lung cancer prevention.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Myrica , Humanos , Myrica/metabolismo , Simulación del Acoplamiento Molecular , Catepsina D/química , Catepsina D/metabolismo , Pulmón/metabolismo
14.
Plant Physiol Biochem ; 202: 107971, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37619269

RESUMEN

Field pea (Pisum sativum L, 2n = 14) is a popular temperate legume with high economic value. Heat shock factors (HSFs) are the core element in the regulatory mechanism of heat stress responses. HSFs in pea (P. sativum) have not been characterized and their role remains unclear in different abiotic stresses. To address this knowledge gap, the current study aimed to characterize the HSF gene family in pea. We identified 38 PsHsf members in P. sativum, which are distributed on the seven chromosomes, and based on phylogenetic analysis, we classified them into three representative classes i.e. A, B, and C. Conserved motif and gene structure analysis confirmed a high degree of similarity among the members of the same class. Additionally, identified cis-acting regulatory elements (CAREs) related to abiotic responses, development, growth, and hormone signaling provides crucial insights into the regulatory mechanisms of PsHsfs. Our research revealed instances of gene duplication in PsHsf gene family, suggesting that this mechanism could be driving the expansion of the PsHsf gene family. Moreover, Expression analysis of PsHsfs exhibited upregulation under heat stress (HS), salt stress (SS), and drought stress (DS) showing their phenomenal role in stress conditions. PsHsfs protein interaction network suggested their involvement in stress-responsive mechanisms. Further transactivation potential was checked for spliced variant of PsHsfA2a (PsHsfA2aI, PsHsfA2aII, and PsHsfA2aIII), PsHsfA3, PsHsfA6b, PsHsfA9, PsHsfB1a, and PsHsfB2a. Overall, these findings provide valuable insight into the evolutionary relationship of PsHsf gene family and their role in abiotic stress responses.


Asunto(s)
Evolución Biológica , Pisum sativum , Pisum sativum/genética , Filogenia , Factores de Transcripción del Choque Térmico/genética , Activación Transcripcional/genética
15.
Curr Biol ; 33(17): 3597-3609.e3, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37557172

RESUMEN

Liverworts comprise one of six primary land plant lineages, with the predicted origin of extant liverwort diversity dating to the Silurian. The ancestral liverwort has been inferred to have been dioicous (unisexual) with chromosomal sex determination in which the U chromosome of females and the V chromosome of males were dimorphic with an extensive non-recombining region. In liverworts, sex is determined by a U chromosomal "feminizer" gene that promotes female development, and in its absence, male development ensues. Monoicy (bisexuality) has independently evolved multiple times within liverworts. Here, we explore the evolution of monoicy, focusing on the monoicous species Ricciocarpos natans, and propose that the evolution of monoicy in R. natans involved the appearance of an aneuploid spore that possessed both U and V chromosomes. Chromosomal rearrangements involving the U chromosome resulted in distribution of essential U chromosome genes, including the feminizer, to several autosomal locations. By contrast, we infer that the ancestral V chromosome was inherited largely intact, probably because it carries numerous dispersed "motility" genes distributed across the chromosome. The genetic networks for sex differentiation in R. natans appear largely unchanged except that the feminizer is developmentally regulated, allowing for temporally separated differentiation of female and male reproductive organs on a single plant. A survey of other monoicous liverworts suggests that similar genomic rearrangements may have occurred repeatedly in lineages transitioning to monoicy from dioicy. These data provide a foundation for understanding how genetic networks controlling sex determination can be subtly rewired to produce profound changes in sexual systems.


Asunto(s)
Hepatophyta , Hepatophyta/genética , Cromosomas Sexuales/genética , Plantas/genética , Evolución Molecular
16.
Biochim Biophys Acta Gen Subj ; 1867(6): 130340, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36868290

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) accounts for 20% of breast cancer that does not express HER2, progesterone and estrogen receptors. It is associated with a high mortality rate, morbidity, metastasis, recurrence, poor prognosis and resistance to chemotherapy. Lipoxygenase-5 (LOX-5), cyclooxygenase-2 (COX-2), cathepsin-D (CATD), ornithine decarboxylase (ODC) and dihydrofolate reductase (DHFR) are involved in breast cancer carcinogenesis; hence, there is a pressing need to identify novel chemicals that targets these enzymes. Narirutin, a flavanone glycoside abundantly present in citrus fruits, is reported to have immune-modulatory, anti-allergic and antioxidant potential. Still, the cancer chemopreventive mechanism against TNBC has not been explored. METHODS: In vitro experiments, enzyme activity, expression analysis, molecular docking and MD simulation were carried out. RESULTS: Narirutin suppressed the growth of MDA-MB-231 and MCF-7 in a dose-proportional manner. The pronounced effect with >50% inhibition was observed in SRB and MTT assays for MDAMB-231 cells. Unexpectedly, narirutin suppressed the proliferation of normal cells (24.51%) at 100 µM. Further, narirutin inhibits the activity of LOX-5 in cell-free (18.18 ± 3.93 µM) and cell-based (48.13 ± 7.04 µM) test systems while moderately affecting COX-2, CATD, ODC and DHFR activity. Moreover, narirutin revealed a down-regulation of LOX-5 expression with a fold change of 1.23. Besides, MD simulation experiments confirm that narirutin binding forms a stable complex with LOX-5 and improves the stability and compactness of LOX-5. In addition, the prediction analysis demonstrates that narirutin could not cross the blood-brain barrier and did not act as an inhibitor of different CYPs. CONCLUSIONS AND SIGNIFICANCE: Narirutin could be a potent cancer chemopreventive lead for TNBC, further paving the way for synthesizing novel analogues.


Asunto(s)
Flavanonas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Lipooxigenasa/uso terapéutico , Ciclooxigenasa 2 , Simulación del Acoplamiento Molecular , Flavanonas/farmacología , Ornitina Descarboxilasa
17.
Genome Biol Evol ; 15(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36726237

RESUMEN

Why do some genomes stay small and simple, while others become huge, and why are some genomes more stable? In contrast to angiosperms and gymnosperms, liverworts are characterized by small genomes with low variation in size and conserved chromosome numbers. We quantified genome evolution among five Marchantiophyta (liverworts), measuring gene characteristics, transposable element (TE) landscape, collinearity, and sex chromosome evolution that might explain the small size and limited variability of liverwort genomes. No genome duplications were identified among examined liverworts and levels of duplicated genes are low. Among the liverwort species, Lunularia cruciata stands out with a genome size almost twice that of the other liverwort species investigated here, and most of this increased size is due to bursts of Ty3/Gypsy retrotransposons. Intrachromosomal rearrangements between examined liverworts are abundant but occur at a slower rate compared with angiosperms. Most genes on L. cruciata scaffolds have their orthologs on homologous Marchantia polymorpha chromosomes, indicating a low degree of rearrangements between chromosomes. Still, translocation of a fragment of the female U chromosome to an autosome was predicted from our data, which might explain the uniquely small U chromosome in L. cruciata. Low levels of gene duplication, TE activity, and chromosomal rearrangements might contribute to the apparent slow rate of morphological evolution in liverworts.


Asunto(s)
Hepatophyta , Hepatophyta/genética , Filogenia , Evolución Molecular , Plantas/genética , Genoma de Planta
18.
Food Chem Toxicol ; 174: 113638, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36708865

RESUMEN

Narirutin is a dietary flavanone found in lemons, oranges, passion fruit, bergamot and grapefruit. It possesses anti-allergic, cardioprotective, neuroprotective, hepatoprotective potential, and its enriched fraction suppresses the growth of prostate cancer cells; however, there is currently no information on the chemopreventive potential of narirutin alone against hormone-refractory prostate cancer cells (PC-3) and its mode of action. Thus, the chemopreventive possibility of narirutin was investigated in PC-3 cells by utilising cytotoxicity assays. Further, a mechanism was deduced targeting hyaluronidase, an early-stage diagnosis marker, by cell-free, cell-based and in silico studies. The results indicate that narirutin reduced the viability of PC-3 cells with the inhibitory concentration range of 66.87-59.80 µM. It induced G0/G1 phase arrest with a fold change of 1.12. Besides, it increased the generation of reactive oxygen species (ROS) with a fold change of 1.34 at 100 µM. Narirutin inhibited hyaluronidase's activity in cell-free (11.17 µM) and cell-based assays (67.23 µM) and showed a strong binding interaction with hyaluronidase. Finally, the MD simulation analysis supported the idea that narirutin binding enhanced compactness and stability and created a stable complex with hyaluronidase. In addition, ADMET prediction indicates that it is a non-toxic, non-CYPs inhibitor and thus didn't alter the metabolism. The results reveal that narirutin may be a potential chemopreventive agent for hormone-resistant prostate cancer cells in addition to offering data for supporting diet-based nutraceutical agents to prevent prostate cancer.


Asunto(s)
Citrus , Flavanonas , Neoplasias de la Próstata , Humanos , Masculino , Flavonoides , Hialuronoglucosaminidasa , Frutas/metabolismo , Neoplasias de la Próstata/metabolismo , División Celular , Flavanonas/farmacología , Hormonas , Proliferación Celular , Línea Celular Tumoral , Apoptosis
19.
Front Immunol ; 13: 952509, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032072

RESUMEN

Wheezing-associated rhinovirus (RV) infections are associated with asthma development. We have shown that infection of immature mice with RV induces type 2 cytokine production and mucous metaplasia which is dependent on IL-33 and type 2 innate lymphoid cells (ILC2s) and intensified by a second heterologous RV infection. We hypothesize that M2a macrophages are required for the exaggerated inflammation and mucous metaplasia in response to heterologous RV infection. Wild-type C57Bl/6J mice and LysMCre IL4Rα KO mice lacking M2a macrophages were treated as follows: (1) sham infection on day 6 of life plus sham on day 13 of life, (2) RV-A1B on day 6 plus sham on day 13, (3) sham on day 6 and RV-A2 on day 13, or (4) RV-A1B on day 6 and RV-A2 on day 13. Lungs were harvested one or seven days after the second infection. Wild-type mice infected with RV-A1B at day 6 showed an increased number of Arg1- and Retnla-expressing lung macrophages, indicative of M2a polarization. Compared to wild-type mice infected with RV on day 6 and 13 of life, the lungs of LysMCre IL4Rα KO mice undergoing heterologous RV infection showed decreased protein abundance of the epithelial-derived innate cytokines IL-33, IL-25 and TSLP, decreased ILC2s, decreased mRNA expression of IL-13 and IL-5, and decreased PAS staining. Finally, mRNA analysis and immunofluorescence microscopy of double-infected LysMCre IL4Rα KO mice showed reduced airway epithelial cell IL-33 expression, and treatment with IL-33 restored the exaggerated muco-inflammatory phenotype. Conclusion: Early-life RV infection alters the macrophage response to subsequent heterologous infection, permitting enhanced IL-33 expression, ILC2 expansion and intensified airway inflammation and mucous metaplasia.


Asunto(s)
Interleucina-33 , Rhinovirus , Animales , Inmunidad Innata , Inflamación , Linfocitos , Macrófagos , Metaplasia , Ratones , ARN Mensajero
20.
Plant Mol Biol ; 110(6): 545-563, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35997919

RESUMEN

WD40 domain-containing proteins are one of the eukaryotes' most ancient and ubiquitous protein families. Little is known about the presence and function of these proteins in cyanobacteria in general and Anabaena in particular. In silico analysis confirmed the presence of WD40 repeats. Gene expression analysis indicated that the transcript levels of both the target proteins were up-regulated up to 4 fold in Cd and drought and 2-3 fold in heat, salt, and UV-B stress. Using a fluorescent oxidative stress indicator, we showed that the recombinant proteins were scavenging reactive oxygen species (ROS) (4-5 fold) more efficiently than empty vectors. Chromatin immunoprecipitation analysis (ChIP) and electrophoretic mobility shift assay (EMSA) revealed that the target proteins function as transcription factors after binding to the promoter sequences. The presence of kinase activity (2-4 fold) in the selected proteins indicated that these proteins could modulate the functions of other cellular proteins under stress conditions by inducing phosphorylation of specific amino acids. The chosen proteins also demonstrated interaction with Zn, Cd, and Cu (1.4-2.5 fold), which might stabilize the proteins' structure and biophysical functions under multiple abiotic stresses. The functionally characterized Alr0671 and All2352 proteins act as transcription factors and offer tolerance to agriculturally relevant abiotic stresses.


Alr0671 and All2352 are novel WD40 proteins of Anabaena capable of regulating biochemical functions and abiotic stress tolerance by acting as a transcription factor and mediating DNA-protein interaction.


Asunto(s)
Anabaena , Cadmio , Anabaena/genética , Estrés Fisiológico/genética , Sequías , Factores de Transcripción/genética , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...