Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur Biophys J ; 53(3): 147-157, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38456905

RESUMEN

Phosphopantetheine adenylyltransferase (EC. 2.7.7.3, PPAT) catalyzes the penultimate step of the multistep reaction in the coenzyme A (CoA) biosynthesis pathway. In this step, an adenylyl group from adenosine triphosphate (ATP) is transferred to 4'-phosphopantetheine (PNS) yielding 3'-dephospho-coenzyme A (dpCoA) and pyrophosphate (PPi). PPAT from strain C3 of Klebsiella pneumoniae (KpPPAT) was cloned, expressed and purified. It was crystallized using 0.1 M HEPES buffer and PEG10000 at pH 7.5. The crystals belonged to tetragonal space group P41212 with cell dimensions of a = b = 72.82 Å and c = 200.37 Å. The structure was determined using the molecular replacement method and refined to values of 0.208 and 0.255 for Rcryst and Rfree factors, respectively. The structure determination showed the presence of three crystallographically independent molecules A, B and C in the asymmetric unit. The molecules A and B are observed in the form of a dimer in the asymmetric unit while molecule C belongs to the second dimer whose partner is related by crystallographic twofold symmetry. The polypeptide chain of KpPPAT folds into a ß/α structure. The conformations of the side chains of several residues in the substrate binding site in KpPPAT are significantly different from those reported in other PPATs. As a result, the modes of binding of substrates, phosphopantetheine (PNS) and adenosine triphosphate (ATP) differ considerably. The binding studies using fluorescence spectroscopy indicated a KD value of 3.45 × 10-4 M for ATP which is significantly lower than the corresponding values reported for PPAT from other species.


Asunto(s)
Adenosina Trifosfato , Klebsiella pneumoniae , Nucleotidiltransferasas , Klebsiella pneumoniae/metabolismo , Cristalografía por Rayos X , Coenzima A/química , Coenzima A/metabolismo
2.
Indian J Pathol Microbiol ; 66(4): 886-887, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38084558

RESUMEN

Ataxia-telangiectasia (A-T) is a rare autosomal recessive disease characterized by ataxia, cutaneous and ocular telangiectasia, impaired immunity with susceptibility to sino-pulmonary infections, radiation sensitivity, and cancers particularly of hemato-lymphoid origin. Liver function tests abnormalities and elevated alfa feto-protein have been reported in A-T; however, there is no reported case of combined hepatocellular-cholangiocarcinoma (cHCC-CC) in literature. These tumors should be treated in similar fashion as in general population; however, reduction of chemotherapy dose might be helpful in decreasing chemo-toxicity.


Asunto(s)
Ataxia Telangiectasia , Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patología , Ataxia Telangiectasia/complicaciones , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/patología , Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/diagnóstico , Estudios Retrospectivos , Conductos Biliares Intrahepáticos/patología
3.
J Inorg Biochem ; 247: 112311, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37421730

RESUMEN

Lactoperoxidase (LPO) is a heme containing mammalian enzyme which uses hydrogen peroxide (H2O2) to catalyze the conversion of substrates into oxidized products. LPO is found in body fluids and tissues such as milk, saliva, tears, mucosa and other body secretions. The previous structural studies have shown that LPO converts substrates, thiocyanate (SCN-) and iodide (I-) ions into oxidized products, hypothiocyanite (OSCN-) and hypoiodite (IO-) ions respectively. We report here a new structure of the complex of LPO with an oxidized product, nitrite (NO2-). This product was generated from NO using the two step reaction of LPO by adding hydrogen peroxide (H2O2) in the solution of LPO in 0.1 M phosphate buffer at pH 6.8 as the first step. In the second step, NO gas was added to the above mixture. This was crystallized using 20% (w/v) PEG-3350 and 0.2 M ammonium iodide at pH 6.8. The structure determination showed the presence of NO2- ion in the distal heme cavity of the substrate binding site of LPO. The structure also showed that the propionate group which is linked to pyrrole ring D of the heme moiety was disordered. Similarly, the side chain of Asp108, which is covalently linked to heme moiety, was also split into two components. As a result of these changes, the conformation of the side chain of Arg255 was altered allowing it to form new interactions with the disordered carboxylic group of propionate moiety. These structural changes are indicative of an intermediate state in the catalytic reaction pathway of LPO.


Asunto(s)
Lactoperoxidasa , Nitritos , Animales , Lactoperoxidasa/química , Nitritos/metabolismo , Óxido Nítrico/metabolismo , Peróxido de Hidrógeno/metabolismo , Dióxido de Nitrógeno/metabolismo , Propionatos , Mamíferos/metabolismo , Hemo/química
4.
J Biomol Struct Dyn ; : 1-12, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37288794

RESUMEN

Mucormycosis is a fungal infection of the sinuses, brain and lungs that is the cause of approximately 50% mortality rate despite the available first-line therapy. Glucose-Regulated Protein 78 (GRP78) is already reported to be a novel host receptor that mediates invasion and damage of human endothelial cells by Rhizopus oryzae and Rhizopus delemar, the most common etiologic species of Mucorales. The expression of GRP78 is also regulated by the levels of iron and glucose in the blood. There are several antifungal drugs in the market but they pose a serious side effect to the vital organs of the body. Therefore, there is an immediate need to discover effective drug molecules having increased efficacy with no side effects. With the help of various computational tools, the current study was attempted to determine potential antimucor agents against GRP78. The receptor molecule GRP78 was screened against 8820 known drugs deposited in DrugBank library using high-throughput virtual screening method. Total top 10 compounds were selected based on the binding energies greater than the reference co-crystal molecule. Furthermore, molecular dynamic (MD) simulations using AMBER were performed to calculate the stability of the top-ranked compounds in the active site of GRP78. After extensive computational studies, we propose that two compounds (CID439153 and CID5289104) have inhibitory potency against mucormycosis and can serve as potential drugs that can form the basis of treating mucormycosis disease.Communicated by Ramaswamy H. Sarma.

5.
Biochim Biophys Acta Proteins Proteom ; 1871(3): 140887, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596432

RESUMEN

The short peptidoglycan recognition protein (PGRP-S) of the innate immune system recognizes the invading microbes through binding to their cell wall molecules. In order to understand the mode of binding of PGRP-S to bacterial cell wall molecules, the structure of the complex of camel PGRP-S (CPGRP-S) with hexanoic acid has been determined at 2.07 Å resolution. Previously, we had reported the structures of CPGRP-S in the native unbound state as well as in the complexed forms with the components of various bacterial cell wall molecules such as peptidoglycan (PGN), lipopolysaccharide (LPS), lipoteichoic acid (LTA), mycolic acid (MA) and other fatty acids. These structures revealed that CPGRP-S formed two homodimers which were designated as A-B and CD dimers. It also showed that the fatty acids bind to CPGRP-S in the binding site at the A-B dimer while the non-fatty acids were shown to bind at the interfaces of both A-B and CD dimers. The present structure of the complex of CPGRP-S with hexanoic acid (HA) showed that HA binds to CPGRP-S at the interface of CD dimer. HA was located in the same groove at the CD interface which was occupied by non-fatty acids such as PGN, LPS and LTA and interacts with residues from both C and D molecules. HA is firmly held in the groove with several hydrogen bonds and a number of van der Waals contacts. This is the first structure which reports the binding of a fatty acid in the cleft at the interface of CD dimer.


Asunto(s)
Camelus , Lipopolisacáridos , Animales , Lipopolisacáridos/química , Ligandos , Caproatos , Sitios de Unión
6.
Scand J Immunol ; 98(1): e13269, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38441191

RESUMEN

We draw the attention of readers and governments to the death rate from coronavirus disease 2019 in Japan, continuing as a fraction of that experienced by many other developed nations. We think this is due to the activity of the powerful, protective lactoperoxidase system (LPO) which prevents serious airborne infections. The LPO system requires iodine, which is liberally provided by the typical Japanese diet but lacking in many others. One might consider the Japanese experience an incredibly large, open-label study exhibiting the preventative power of a high-iodine diet. We predict this favourable trend will continue for Japan because deadly variants of the severe, acute respiratory syndrome coronavirus 2 will be with us, forever.


Asunto(s)
COVID-19 , Yodo , Humanos , Japón/epidemiología , Lactoperoxidasa , SARS-CoV-2
7.
J Dairy Res ; 89(4): 427-430, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36533547

RESUMEN

Lactoperoxidase (LPO) is a glycosylated antimicrobial protein present in milk with a molecular mass of 78 kDa. LPO is included in many biological processes and is well-known to have biocidal actions, acting as an active antibiotic and antiviral agent. The wide spectrum biocidal activity of LPO is mediated via a definite inhibitory system named lactoperoxidase system which plays a potent role in the innate immune response. With the current advancement in nanotechnology, nanoformulations can be developed for stabilizing and potentiating the activity of LPO for several applications. In the research described in this Research Communication, fresh LPO purified from bovine mammary gland secretions was used for nanoparticle synthesis using a simple thermal process at different pH and temperatures. The round-shaped nanoparticles (average size 229 nm) were successfully synthesized at pH 7.0 and a temperature of 75°C. These nanoparticles were tested against four different bacterial species namely S. flexineri, P. aeruginosa, S. aureus, and E. coli. The prepared nanoparticles exhibited strong inhibition of the growth against all four bacterial species as stated by their MIC and ZOI values. These results may help in increasing the efficiency of lactoperoxidase system and will assist in identifying novel avenues to enhance the stability and antimicrobial function of LPO in drug discovery and industrial processes.


Asunto(s)
Antiinfecciosos , Lactoperoxidasa , Animales , Bovinos , Lactoperoxidasa/química , Escherichia coli , Staphylococcus aureus , Leche/química , Antiinfecciosos/farmacología
8.
Int J Biochem Mol Biol ; 13(4): 28-39, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188729

RESUMEN

Peptidoglycan recognition proteins (PGRPs) are important components of the innate immune system which provide the first line of defense against invading microbes. There are four members in the family of PGRPs in animals of which PGRP-S is a common domain. It is responsible for the binding to microbial cell wall molecules. In order to understand the mode of binding of PGRP-S to the components of the bacterial cell wall, the structure of the complex of camel PGRP-S (CPGRP-S) with heptanoic acid has been determined at 2.15 Å resolution. The structure determination showed the presence of four crystallographically independent protein molecules which are designated as A, B, C, and D. These four protein molecules associate in the form of two homodimers which are represented as A-B and C-D dimers. The association between molecules A and B gives rise to a shallow cleft on the surface at one end of the dimeric interface. One molecule of heptanoic acid is observed at this binding site in the A-B dimer. The association of C and D molecules results in the formation of a long zig-zag tunnel along with the C-D interface. In the cleft at the C-D interface, three molecules of hydrogen peroxide along with other non-water solvent molecules have been observed. The analysis of the several complexes of CPGRP-S with fatty acids and non-fatty acids such as peptidoglycan, lipopolysaccharide, and lipoteichoic acid shows that the fatty acids bind at the A-B site while non-fatty acids interact through C-D interface.

9.
Protein Pept Lett ; 29(10): 839-850, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35975859

RESUMEN

BACKGROUND: The ESKAPE group of pathogens which comprise of multidrug resistant bacteria, namely Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species are the cause of deadly nosocomial infections all over the world. While these pathogens have developed robust strategies to resist most antibiotics, their ability to form biofilms is one of their most combative properties. Hence there is an urgent need to discover new antibacterial agents which could prevent or destroy the biofilms made by these bacteria. Though it has been established that lactoferrin (LF), a potent iron binding antibacterial, antifungal, and antiviral protein displays anti-biofilm properties, its mechanisms of action, in addition to its iron chelation property, still remains unclear. OBJECTIVE: The binding and inhibition studies of LF with the enzyme Nucleoside diphosphate Kinase (NDK) and its elastase cleaved truncated 12 kDa fragment (12-NDK). METHODS: The characterization studies of NDK and 12-NDK using florescence spectroscopy, dynamic light scattering, size exclusion chromatography and ADP-glo Kinase Assay. Inhibition studies of LF-NDK using ADP-glo kinase assay, Surface Plasmon Resonance and Biofilm inhibition studies. RESULTS: NDK and 12-NDK were cloned, expressed and purified from Acinetobacter baumannii and Pseudomonas aeruginosa. The characterization studies revealed NDK and 12-NDK from both species are stable and functional. The inhibition studies of LF-NDK revealed stable binding and inhibition of kinase activity by LF. CONCLUSION: The binding and inhibition studies have shown that while LF binds with both the NDK and their truncated forms, it tends to have a higher binding affinity with the truncated 12 kDa fragments, resulting in their decreased kinase activity. This study essentially gives a new direction to the field of inhibition of biofilm formation, as it proves that LF has a novel mechanism of action in other than iron sequestration.


Asunto(s)
Acinetobacter baumannii , Nucleósido-Difosfato Quinasa , Nucleósido-Difosfato Quinasa/química , Nucleósido-Difosfato Quinasa/metabolismo , Lactoferrina/farmacología , Pseudomonas aeruginosa , Antibacterianos/farmacología , Hierro , Adenosina Difosfato
10.
Indian J Ophthalmol ; 70(7): 2328-2334, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35791114

RESUMEN

Lactoferrin (LF) is an iron-binding glycoprotein released from mucous secreting cells and neutrophils. LF can be used in a broad range of eye diseases related to the retina, cornea, and optic nerve. The retina is particularly affected by oxidative stress inside the photoreceptor being constantly exposed to light which induces accumulation of reactive oxygen species (ROS) in the retinal pigmented epithelium (RPE) causing damage to photoreceptor recycling. Retinitis pigmentosa (RP) and macular degeneration are inherited retinopathies that consist of different disease-causing genes, that cause mutations with highly varied clinical consequences. Age-related macular degeneration is a chronic disease of the retina and one of the major causes of sight loss. This review provides an application of lactoferrin and LF-based nano-formulations or nanoparticles in the field of retinal diseases or corneal diseases such as retinitis pigmentosa, retinoblastoma, age-related macular degeneration (AMD), keratoconus and uveitis. Several studies have found that lactoferrin's antibacterial activity is not limited to its iron sequestration, but also its ability as a nanoparticle that acts as a carrier to deliver drugs by crossing the blood-retina barrier (BRB) and its involvement in cell cycle control, which is not possible by many transferrin proteins.


Asunto(s)
Degeneración Macular , Retinitis Pigmentosa , Humanos , Hierro/metabolismo , Lactoferrina/metabolismo , Degeneración Macular/metabolismo , Retina/metabolismo , Retinitis Pigmentosa/metabolismo
11.
J Chem Inf Model ; 62(7): 1744-1759, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35333517

RESUMEN

Acinetobacter baumannii is a multidrug-resistant, opportunistic, nosocomial pathogen for which a new line of treatments is desperately needed. We have targeted the enzyme of the first step of the histidine biosynthesis pathway, viz., ATP-phosphoribosyltransferase (ATP-PRT). The three-dimensional structure of ATP-PRT was predicted on the template of the known three-dimensional structure of ATP-PRT from Psychrobacter arcticus (PaATPPRT) using a homology modeling approach. High-throughput virtual screening (HTVS) of the antibacterial library of Life Chemicals Inc., Ontario, Canada was carried out followed by molecular dynamics simulations of the top hit compounds. In silico results were then biochemically validated using surface plasmon resonance spectroscopy. We found that two compounds, namely, F0843-0019 and F0608-0626, were binding with micromolar affinities to the ATP-phosphoribosyltransferase from Acinetobacter baumannii (AbATPPRT). Both of these compounds were binding in the same way as AMP in PaATPPRT, and the important residues of the active site, viz., Val4, Ser72, Thr76, Tyr77, Glu95, Lys134, Val136, and Tyr156, were also interacting via hydrogen bonds. The calculated binding energies of these compounds were -10.5 kcal/mol and -11.1 kcal/mol, respectively. These two compounds can be used as the potential lead molecules for designing antibacterial compounds in the future, and this information will help in drug discovery programs against Acinetobacter worldwide.


Asunto(s)
Acinetobacter baumannii , Acinetobacter baumannii/metabolismo , Adenosina Trifosfato/metabolismo , Antibacterianos/química , Histidina , Simulación del Acoplamiento Molecular
12.
Scand J Immunol ; 95(2): e13111, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34709678

RESUMEN

The mammalian lactoperoxidase system, consisting of lactoperoxidase and the H2 O2 -producing enzyme duox, is our first line of defence against airborne microbes. This system catalyses the production of hypoiodite and hypoiodous acid in the presence of sufficient iodine. These products are highly efficient at destroying the H1N1 virus and the respiratory syncytial virus (RSV). Japan has not been affected as much as other nations during the COVID-19 pandemic (death rate about 10% of the United States), and we think this is due to a diet high in iodine. With this in mind, we suggest four actions to prevent SARS-CoV-2 infections. First, health professionals should study the preventative effect of increasing iodine in the diets of the aged, institutionalized, diabetics andsmokers. Second, the recommended daily intake (RDI) for iodine should be significantly increased, to at least double, the current RDI. Governments should encourage the use and distribution of cheap iodized salts, kelp and seaweed. Third, more research should be done around the physiology and the protective effects of the lactoperoxidase system. Finally, the degradation products of the SARS-CoV-2 viral particle by hypoiodite and hypoiodous acid should be characterized; portions of the damaged particle are likely to elicit stronger immunity and better vaccines.


Asunto(s)
COVID-19/dietoterapia , COVID-19/prevención & control , Dietoterapia/métodos , Yodo/administración & dosificación , SARS-CoV-2/efectos de los fármacos , COVID-19/epidemiología , Dieta , Humanos , Inmunomodulación/inmunología , Compuestos de Yodo/metabolismo , Japón/epidemiología , Lactoperoxidasa/metabolismo
14.
J Biomol Struct Dyn ; 40(21): 11405-11417, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34348086

RESUMEN

Acinetobacter baumannii is an extremely dangerous multidrug-resistant (MDR) gram-negative pathogen which poses a serious life-threatening risk in immunocompromised patients. Phosphopantothenoyl cysteine synthetase (PPCS) catalyzes the formation of an amide bond between L-cysteine and phosphopantothenic acid (PPA) to form 4'- Phosphopantothenoylcysteine during Coenzyme A (CoA) biosynthesis. CoA is a crucial cofactor for cellular survival and inhibiting its synthesis will result in cell death. Bacterial PPCS differs from eukaryotic PPCS in a number of ways like it exists as a C-terminal domain of a PPCDC/PPCS fusion protein whereas eukaryotic PPCS exists as an independent protein. This difference makes it an attractive drug target. For which a conventional iterative approach of SBDD (structure-based drug design) was used, which began with three-dimensional structure prediction of AbPPCS using PHYRE 2.0. A database of FDA-approved compounds (Drug Bank) was then screened against the target of interest by means of docking score and glide energy, leading to the identification of 6 prominent drug candidates. The shortlisted 6 molecules were further subjected to all-atom MD simulation studies in explicit-solvent conditions (using AMBER force field). The MD simulation studies revealed that the ligands DB65103, DB449108 and DB443210, maintained several H-bonds with intense van der Waals contacts at the active site of the protein with high binding free energies: -11.42 kcal/mol, -10.49 kcal/mol and -10.98 kcal/mol, respectively, calculated via MM-PBSA method. Overall, binding of these compounds at the active site was found to be the most stable and robust highlighting the potential of these compounds to serve as antibacterials.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Acinetobacter baumannii , Péptido Sintasas , Acinetobacter baumannii/efectos de los fármacos , Dominio Catalítico , Coenzima A/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptido Sintasas/antagonistas & inhibidores
15.
Protein Sci ; 31(2): 384-395, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34761444

RESUMEN

Lactoperoxidase (1.11.1.7, LPO) is a mammalian heme peroxidase found in the extracellular fluids of mammals including plasma, saliva, airway epithelial lining fluids, nasal lining fluid, milk, tears, gastric juices, and intestinal mucosa. To perform its innate immune action against invading microbes, LPO utilizes hydrogen peroxide (H2 O2 ) to convert thiocyanate (SCN- ) and iodide (I- ) ions into the oxidizing compounds hypothiocyanite (OSCN- ) and hypoiodite (IO- ). Previously determined structures of the complexes of LPO with SCN- , OSCN- , and I- show that SCN- and I- occupy appropriate positions in the distal heme cavity as substrates while OSCN- binds in the distal heme cavity as a product inhibitor. We report here the structure of the complex of LPO with IO- as the first structural evidence of the conversion of iodide into hypoiodite by LPO. To obtain this complex, a solution of LPO was first incubated with H2 O2 , then mixed with ammonium iodide solution and the complex crystallized by the addition of PEG-3350, 20% (wt/vol). These crystals were used for X-ray intensity data collection and structure analysis. The structure determination revealed the presence of four hypoiodite ions in the substrate binding channel of LPO. In addition to these, six other hypoiodite ions were observed at different exterior sites. We surmise that the presence of hypoiodite ions in the distal heme cavity blocks the substrate binding site and inhibits catalysis. This was confirmed by activity experiments with the colorimetric substrate, ABTS (2,2'-azino-bis(3-ethylbenzthiazoline-sulfonic acid)), in the presence of hypoiodite and iodide ions.


Asunto(s)
Yoduros , Lactoperoxidasa , Animales , Cristalografía por Rayos X , Hemo/química , Peróxido de Hidrógeno/química , Compuestos de Yodo , Lactoperoxidasa/química , Lactoperoxidasa/metabolismo , Mamíferos , Oxidación-Reducción
16.
Protein J ; 40(6): 857-866, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34734372

RESUMEN

C-lobe represents the C-terminal half of lactoferrin which is a bilobal 80 kDa iron binding glycoprotein. The two lobes are designated as N-lobe (Ser1-Glu333) and C-lobe (Arg344-Arg689). The N- and C-lobes are connected by a 10-residue long α-helical peptide (Thr334-Thr343). Both lobes adopt similar conformations and have identical iron binding sites. The bilobal lactoferrin was hydrolyzed in a limited proteolysis using pepsin at pH 2.0. It produced a 40 kDa and fully functional C-lobe which was purified and crystallized at pH 8.0. The structure determination revealed that the structure contained residues from Tyr342 to Arg689 representing a fully functional monoferric C-lobe. It showed that pepsin cleaved lactoferrin at the peptide bond Arg341-Tyr342 which is part of the inter-lobe decapeptide. Interestingly, the two previously determined structures of the enzymatically produced C-lobe using trypsin and proteinase K also cleaved lactoferrin at the same peptide bond Arg341-Tyr342. This was a striking result as the three enzymes, pepsin, trypsin and proteinase K have different specificity requirements and yet they cleaved the bilobal lactoferrin at the same peptide bond and generated an identical and fully functional C-lobe. This shows that the observed cleavage site in lactoferrin adopts a highly favourable conformation for proteolysis. It is noteworthy that the three enzymes with different specificities cut the protein at the same peptide bond which may be of physiological significance because the antibacterial action of lactoferrin is extended further through the C-lobe.


Asunto(s)
Lactoferrina , Pepsina A , Sitios de Unión , Hierro/metabolismo , Serina Proteasas
17.
Front Microbiol ; 12: 672589, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220755

RESUMEN

The problem of antibiotic resistance has prompted researchers around the globe to search for new antimicrobial agents. Antimicrobial proteins and peptides are naturally secreted by almost all the living organisms to fight infections and can be safer alternatives to chemical antibiotics. Lactoferrin (LF) is a known antimicrobial protein present in all body secretions. In this study, LF was digested by trypsin, and the resulting hydrolysates were studied with respect to their antimicrobial properties. Among the hydrolysates, a 21-kDa basic fragment of LF (termed lactosmart) showed promise as a new potent antimicrobial agent. The antimicrobial studies were performed on various microorganisms including Shigella flexneri, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli as well as fungal pathogens such as Candida albicans, Candida tropicalis, and Candida glabrata. In addition, the lipopolysaccharide (LPS)-binding properties of lactosmart were studied using surface plasmon resonance technique in vitro, along with docking of LPS and molecular dynamics (MD) simulation studies. The results showed that lactosmart had better inhibitory effects against pathogenic microorganisms compared to LF. The results of docking and MD simulation studies further validated the tighter binding of LPS to lactosmart compared to LF. The two LPS-binding sites have been characterized structurally in detail. Through these studies, it has been demonstrated that in native LF, only one LPS-binding site remains exposed due to its location being on the surface of the molecule. However, due to the generation of the lactosmart molecule, the second LPS-binding site gets exposed too. Since LPS is an essential and conserved part of the bacterial cell wall, the pro-inflammatory response in the human body caused by LPS can be targeted using the newly identified lactosmart. These findings highlight the immense potential of lactosmart in comparison to native LF in antimicrobial defense. We propose that lactosmart can be further developed as an antibacterial, antifungal, and antibiofilm agent.

18.
Mol Divers ; 25(3): 1439-1460, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34159484

RESUMEN

The accumulation of massive data in the plethora of Cheminformatics databases has made the role of big data and artificial intelligence (AI) indispensable in drug design. This has necessitated the development of newer algorithms and architectures to mine these databases and fulfil the specific needs of various drug discovery processes such as virtual drug screening, de novo molecule design and discovery in this big data era. The development of deep learning neural networks and their variants with the corresponding increase in chemical data has resulted in a paradigm shift in information mining pertaining to the chemical space. The present review summarizes the role of big data and AI techniques currently being implemented to satisfy the ever-increasing research demands in drug discovery pipelines.


Asunto(s)
Inteligencia Artificial , Macrodatos , Descubrimiento de Drogas/métodos , Algoritmos , Bases de Datos Factuales , Aprendizaje Profundo , Diseño de Fármacos , Aprendizaje Automático , Reproducibilidad de los Resultados , Flujo de Trabajo
19.
J Inorg Biochem ; 220: 111461, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33882424

RESUMEN

Lactoperoxidase (LPO) is a mammalian heme peroxidase which catalyzes the conversion of thiocyanate (SCN¯) and iodide (I-) by hydrogen peroxide (H2O2) into antimicrobial hypothiocyanite (OSCN¯) and hypoiodite (IO-). The prosthetic heme group is covalently attached to LPO through two ester linkages involving conserved glutamate and aspartate residues. On the proximal side, His351 is coordinated to heme iron while His 109 is located in the substrate binding site on the distal heme side. We report here the first structure of the ternary complex of LPO with iodide (I-) and H2O2 at 1.77 Å resolution. LPO was crystallized with ammonium iodide and the crystals were soaked in the reservoir solution containing H2O2. Structure determination showed the presence of an iodide ion and a H2O2 molecule in the substrate binding site. The iodide ion occupied the position which is stabilized by the interactions with heme moiety, His109, Arg255 and Glu258 while H2O2 was held between the heme iron and His109. The presence of I- in the distal heme cavity seems to screen the positive charge of Arg255 thus suppressing the proton transfer from H2O2 to His109. This prevents compound I formation and allows trapping of a stable enzyme-substrate (LPO-I--H2O2) ternary complex. This stable geometrical arrangement of H2O2 in the distal heme cavity of LPO is similar to that of H2O2 in the structure of the transient intermediate of the palm tree heme peroxidase. The biochemical studies showed that the catalytic activity of LPO decreased when the samples of LPO were preincubated with ammonium iodide.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Yoduros/metabolismo , Lactoperoxidasa/metabolismo , Animales , Sitios de Unión , Bovinos , Calostro/enzimología , Cristalografía por Rayos X , Peróxido de Hidrógeno/química , Yoduros/química , Lactoperoxidasa/química , Unión Proteica , Estructura Terciaria de Proteína
20.
J Biol Inorg Chem ; 26(1): 149-159, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33427997

RESUMEN

Lactoperoxidase, a heme-containing glycoprotein, catalyzes the oxidation of thiocyanate by hydrogen peroxide into hypothiocyanite which acts as an antibacterial agent. The prosthetic heme moiety is attached to the protein through two ester linkages via Glu258 and Asp108. In lactoperoxidase, the substrate-binding site is formed on the distal heme side. To study the effect of physiologically important potassium ion on the structure and function of lactoperoxidase, the fresh protein samples were isolated from yak (Bos grunniens) colostrum and purified to homogeneity. The biochemical studies with potassium fluoride showed a significant reduction in the catalytic activity. Lactoperoxidase was crystallized using 200 mM ammonium nitrate and 20% PEG-3350 at pH 6.0. The crystals of LPO were soaked in the solution of potassium fluoride and used for the X-ray intensity data collection. Structure determination at 2.20 Å resolution revealed the presence of a potassium ion in the distal heme cavity. Structure determination further revealed that the propionic chain attached to pyrrole ring C of the heme moiety, was disordered into two components each having an occupancy of 0.5. One component occupied a position similar to the normally observed position of propionic chain while the second component was found in the distal heme cavity. The potassium ion in the distal heme cavity formed five coordinate bonds with two oxygen atoms of propionic moiety, Nε2 atom of His109 and two oxygen atoms of water molecules. The presence of potassium ion in the distal heme cavity hampered the catalytic activity of lactoperoxidase.


Asunto(s)
Lactoperoxidasa/metabolismo , Potasio/metabolismo , Animales , Sitios de Unión , Biocatálisis , Calcio/química , Calcio/metabolismo , Bovinos , Calostro/enzimología , Cristalografía por Rayos X , Hemo/química , Hemo/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Lactoperoxidasa/química , Potasio/química , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA