RESUMEN
T helper (Th) 17 cells encompass a spectrum of cell states, including cells that maintain homeostatic tissue functions and pro-inflammatory cells that can drive autoimmune tissue damage. Identifying regulators that determine Th17 cell states can identify ways to control tissue inflammation and restore homeostasis. Here, we found that interleukin (IL)-23, a cytokine critical for inducing pro-inflammatory Th17 cells, decreased transcription factor T cell factor 1 (TCF1) expression. Conditional deletion of TCF1 in mature T cells increased the pro-inflammatory potential of Th17 cells, even in the absence of IL-23 receptor signaling, and conferred pro-inflammatory potential to homeostatic Th17 cells. Conversely, sustained TCF1 expression decreased pro-inflammatory Th17 potential. Mechanistically, TCF1 bound to RORγt, thereby interfering with its pro-inflammatory functions, and orchestrated a regulatory network that determined Th17 cell state. Our findings identify TCF1 as a major determinant of Th17 cell state and provide important insight for the development of therapies for Th17-driven inflammatory diseases.
RESUMEN
Interleukin-17 (IL-17)-producing helper T (TH17) cells are heterogenous and consist of nonpathogenic TH17 (npTH17) cells that contribute to tissue homeostasis and pathogenic TH17 (pTH17) cells that mediate tissue inflammation. Here, we characterize regulatory pathways underlying TH17 heterogeneity and discover substantial differences in the chromatin landscape of npTH17 and pTH17 cells both in vitro and in vivo. Compared to other CD4+ T cell subsets, npTH17 cells share accessible chromatin configurations with regulatory T cells, whereas pTH17 cells exhibit features of both npTH17 cells and type 1 helper T (TH1) cells. Integrating single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) and single-cell RNA sequencing (scRNA-seq), we infer self-reinforcing and mutually exclusive regulatory networks controlling different cell states and predicted transcription factors regulating TH17 cell pathogenicity. We validate that BACH2 promotes immunomodulatory npTH17 programs and restrains proinflammatory TH1-like programs in TH17 cells in vitro and in vivo. Furthermore, human genetics implicate BACH2 in multiple sclerosis. Overall, our work identifies regulators of TH17 heterogeneity as potential targets to mitigate autoimmunity.
Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Cromatina , Células Th17 , Animales , Femenino , Humanos , Ratones , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Cromatina/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/genética , Inflamación/inmunología , Inflamación/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/genética , Análisis de la Célula Individual , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Células TH1/inmunología , Células Th17/inmunología , Células Th17/metabolismoRESUMEN
DprE1 is involved in the synthesis of Mycobacterium tuberculosis cell wall and is a potent drug target for Tuberculosis (TB) treatment. The structure and dynamics of the loops L-I and L-II flanking the inhibitor binding site was studied using molecular dynamics (MD) simulation and MMPBSA in Amber v18. Docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) of 55 Morpholino-pyrimidine (MP) inhibitors was carried out using Autodock v1.2.0 and Forge v10. ADMET analysis was done using SwissADME and pkCSM. All MP inhibitors docked in the DprE1 binding pocket, making contacts with L-II residues. MD studies showed that L-I and L-II unfold in the absence of the inhibitor but fold stably structure with reduced protein motions in the presence of MP-38, the highest affinity inhibitor. This was confirmed by k-means clustering and secondary structure analysis. L-II residues, L317, F320 and R325 contributed most towards the MMPBSA binding free energy of MP-38. A robust field-based 3D-QSAR model showed values of r2train = 0.982, r2test = 0.702 and q2 = 0.516. The MP inhibitor field points were broadly divided into negative electrostatics near the A, B rings and hydrophobic electrostatics near the D, E rings. Addition of negative groups at methanone position and ring B as well as addition of hydrophobic and bulky groups at ring E will improve activity. Highly active compounds 47, 49 and 50 of MP series exhibited highly favourable drug-like properties. SAR and ADMET insights attained from this model will help in the development of active DprE1 inhibitors in future.Communicated by Ramaswamy H. Sarma.
RESUMEN
Aim: The efficacy of a pyochelin-zingerone conjugate (PZC) against Pseudomonas aeruginosa in vivo in a mouse model of peritonitis, as well as mode of action in vitro, were investigated. Methods & results: Intraperitoneal administration of PZC (220 mg kg-1 b.wt.) resulted in a significant reduction in bacterial count in liver tissue by 2 log10 on the 4th day post infection. This was supported by reduced levels of inflammatory markers, liver function, inflammatory cytokines and improved histopathology. PZC showed its ability to disrupt the cellular membrane, increase permeability of the membrane and leakage of intracellular contents of P. aeruginosa, resulting in its death. Conclusion: The present study reports the hepatoprotective potential of PZC in an experimental model of P. aeruginosa-induced peritonitis.
Asunto(s)
Peritonitis , Infecciones por Pseudomonas , Animales , Ratones , Pseudomonas aeruginosa , Peritonitis/tratamiento farmacológico , Peritonitis/microbiología , Peritonitis/patología , Fenoles/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiologíaRESUMEN
Co-inhibitory and checkpoint molecules suppress T cell function in the tumor microenvironment, thereby rendering T cells dysfunctional. Although immune checkpoint blockade is a successful treatment option for multiple human cancers, severe autoimmune-like adverse effects can limit its application. Here, we show that the gene encoding peptidoglycan recognition protein 1 (PGLYRP1) is highly coexpressed with genes encoding co-inhibitory molecules, indicating that it might be a promising target for cancer immunotherapy. Genetic deletion of Pglyrp1 in mice led to decreased tumor growth and an increased activation/effector phenotype in CD8+ T cells, suggesting an inhibitory function of PGLYRP1 in CD8+ T cells. Surprisingly, genetic deletion of Pglyrp1 protected against the development of experimental autoimmune encephalomyelitis, a model of autoimmune disease in the central nervous system. PGLYRP1-deficient myeloid cells had a defect in antigen presentation and T cell activation, indicating that PGLYRP1 might function as a proinflammatory molecule in myeloid cells during autoimmunity. These results highlight PGLYRP1 as a promising target for immunotherapy that, when targeted, elicits a potent antitumor immune response while protecting against some forms of tissue inflammation and autoimmunity.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Neoplasias , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/metabolismo , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Inmunoterapia , Inflamación , Enfermedades Neuroinflamatorias , Microambiente TumoralRESUMEN
Aims and Objective: Purpose of this research was to check the precision of gender identification using computed tomography (CT) head and neck scans and volumetric analysis of the maxillary sinus. Materials and Methods: For 50 patients (25 females and 25 males), left and right maxillary sinus scans were acquired, and linear measurements (width, length, height, and volume) were assessed. Both maxillary sinus measurements' means and standard deviations were computed and contrasted. Results: Males have been found to have considerably larger maxillary sinuses than females. Conclusion: Accurate gender determination is possible with the use of maxillary sinus.
RESUMEN
BACKGROUND: Human neutrophil elastase (HNE) is a key driver of systemic and cardiopulmonary inflammation. Recent studies have established the existence of a pathologically active auto-processed form of HNE with reduced binding affinity against small molecule inhibitors. METHOD: AutoDock Vina v1.2.0 and Cresset Forge v10 software were used to develop a 3D-QSAR model for a series of 47 DHPI inhibitors. Molecular Dynamics (MD) simulations were carried out using AMBER v18 to study the structure and dynamics of sc (single-chain HNE) and tcHNE (two-chain HNE). MMPBSA binding free energies of the previously reported clinical candidate BAY 85-8501 and the highly active BAY-8040 were calculated with sc and tcHNE. RESULTS: The DHPI inhibitors occupy the S1 and S2 subsites of scHNE. The robust 3D-QSAR model showed acceptable predictive and descriptive capability with regression coefficient of r2 = 0.995 and cross-validation regression coefficient q2 = 0.579 for the training set. The key descriptors of shape, hydrophobics and electrostatics were mapped to the inhibitory activity. In auto-processed tcHNE, the S1 subsite undergoes widening and disruption. All the DHPI inhibitors docked with the broadened S1'-S2' subsites of tcHNE with lower AutoDock binding affinities. The MMPBSA binding free energy of BAY-8040 with tcHNE reduced in comparison with scHNE while the clinical candidate BAY 85-8501 dissociated during MD. Thus, BAY-8040 may have lower inhibitory activity against tcHNE whereas the clinical candidate BAY 85-8501 is likely to be inactive. CONCLUSION: SAR insights gained from this study will aid the future development of inhibitors active against both forms of HNE.
Asunto(s)
Elastasa de Leucocito , Pirimidinonas , Humanos , Elastasa de Leucocito/química , Elastasa de Leucocito/metabolismo , Sulfonas , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Simulación del Acoplamiento MolecularRESUMEN
EN25 steels have been found to be applicable in shafts, gears, etc., but welding of EN25 steel was performed using electron beam welding with different oscillation beam diameters varying from 2 mm to 0.5 mm. The present study reports the effect of beam oscillation on the evolution of nonmetallic inclusions, microstructures, and mechanical properties of EN25 steel. Heat input calculations showed that the application of beam oscillations resulted in significantly lower heat inputs compared to their non-oscillating counterparts. The highest fraction of the retained austenite (9.35%) was observed in a weld prepared with beam oscillation at a 2-mm oscillation diameter, and it decreased to 3.27% at an oscillating diameter of 0.5 mm, and it further reduced to 0.36% for non-oscillating beam cases. Residual stresses were compressive in the fusion zone, irrespective of beam oscillation. Beam oscillation resulted in equiaxed grain in the recenter region of the fusion zone, attributed to heat mixing and the evolution of random texture. The application of beam oscillations resulted in a significant decrease in the size of the nonmetallic inclusions to 0.1-0.5 compared to 5-20 mm in base metal. All tensile samples failed in the base metal, indicating good strength of the weld. Fusion zone hardness (250-670 HNV) and wear properties (COF 0.7 to COF 0.45) improved irrespective of with and without beam oscillation.
RESUMEN
BACKGROUND: Transfusion-associated graft versus host disease (TA-GVHD) is often underreported. There may also be lapses in TA-GVHD prevention practices due to lack of revision of some of the existing clinical guidelines as well as limited audits on practices of blood component irradiation. This study was undertaken to highlight these shortcomings, and generate data for development of institutional guidelines. METHODS/MATERIALS: Study cohort was selected from patients requiring transfusion support during June 2019 to May 2020. Transfusion history of these patients were followed, both retrospectively and prospectively till July 2021. Transfusion requisitions were categorized as IR (with request for irradiation) or NIR (with no request for irradiation) and justified or unjustified according to published international guidelines. RESULTS: Total 6963 requisitions for cellular blood components were received from 255 patients included in the study cohort. Of these, 3690 (54.9 %) were IR requisitions, while remaining 3029 (45.1 %) requisitions were NIR. Overall, 4242 (63.1 %) requisition were justified for their irradiation status as per published guidelines and 1595 (23.8 %) were found to be Unjustified while justification could not be assessed for remaining 882 (13.1 %) of the requisitions. The highest proportion of Unjustified demands in NIR requisitions was observed in patients with Severe Aplastic anemia (59.4 %). CONCLUSION: Many units were unnecessarily irradiated (7.7 %) while irradiation was missed in 16 % of the requisitions included in analysis which may be attributed to lack of institutional guidelines. We recommend that every centre should adopt a published well-researched guideline including amendments based on review of practices at their center.
Asunto(s)
Enfermedad Injerto contra Huésped , Reacción a la Transfusión , Humanos , Estudios Retrospectivos , Centros de Atención Terciaria , Enfermedad Injerto contra Huésped/prevención & control , Transfusión de Componentes Sanguíneos , DemografíaRESUMEN
In this study, we report the chemical synthesis, computational analysis, and anti-virulent studies of five Vanillin-based hybrids employing phytochemicals. Vanillin (V) is known to have substantial anti-quorum sensing activity against the gram-negative pathogen Pseudomonas aeruginosa. Therefore, with the aim to further enhance the potency of Vanillin, it was chemically conjugated via a triazole (T) linker with five phytochemicals- Zingerone (Z), Eugenol (E), Guaiacol (G), Cinnamaldehyde (C), and Ferulic acid (F) to form the hybrids named as VTZ (1), VTE (2), VTG (3), VTC (4), and VTF (5), respectively. Molecular docking studies revealed the strong binding affinity of the designed hybrids with quorum-sensing receptors (LasR, Rh1R, and PqsR). The synthesized hybrids were also evaluated for anti-quorum sensing activities to examine the efficacy against P. aeruginosa bacterial strains PAO1. The hybrids VTE (2), VTG (3), and VTC (4) displayed improved anti-quorum activity relative to Vanillin. Furthermore, the attenuation of virulence factors of P. aeruginosa (Las-A protease, Las-B elastase, pyocyanin pigmentation, and motility) in the presence of VTE (2), VTG (3), and VTC (4) further authenticated the anti-virulent activity of the hybrids. The new design strategy of the phytochemical-phytochemical scaffolds and their biological evaluation provides a proof of concept for the simultaneous perturbation of well-established anti-virulent targets. This appears to be highly promising and effective strategy to ameliorate the enigma of antimicrobial resistance.
Asunto(s)
Pseudomonas aeruginosa , Tromboembolia Venosa , Humanos , Biopelículas , Simulación del Acoplamiento Molecular , Antibacterianos/química , Fitoquímicos/farmacologíaRESUMEN
Despite recent advances in treatment and surveillance, metastatic melanoma still carries a poor prognosis. Large/giant congenital melanocytic nevi (CMNs) constitute a known risk factor for the condition, with the greatest risk for malignant transformation thought to be during childhood (median age at diagnosis of 3 years in a previous cohort). Herein, we present the case of a 30-year-old male who, after undergoing multiple excision/grafting procedures for a giant CMN as a child, was diagnosed with an NRAS-mutant, MDM2-amplified metastatic melanoma more than 20 years later. Response to ipilimumab/nivolumab immunotherapy, cisplatin/vinblastine/temozolomide chemotherapy, and nivolumab/relatlimab immunotherapy was poor. This case highlights the importance of lifetime monitoring with once-yearly dermatological examination (including lymph node palpation) in large/giant CMN patients, as well as the need for further clinical trials evaluating novel therapies for NRAS-mutant melanoma.
RESUMEN
Interleukin-23 receptor plays a critical role in inducing inflammation and autoimmunity. Here, we report that Th1-like cells differentiated in vitro with IL-12 + IL-21 showed similar IL-23R expression to that of pathogenic Th17 cells using eGFP reporter mice. Fate mapping established that these cells did not transition through a Th17 cell state prior to becoming Th1-like cells, and we observed their emergence in vivo in the T cell adoptive transfer colitis model. Using IL-23R-deficient Th1-like cells, we demonstrated that IL-23R was required for the development of a highly colitogenic phenotype. Single-cell RNA sequencing analysis of intestinal T cells identified IL-23R-dependent genes in Th1-like cells that differed from those expressed in Th17 cells. The perturbation of one of these regulators (CD160) in Th1-like cells inhibited the induction of colitis. We thus uncouple IL-23R as a purely Th17 cell-specific factor and implicate IL-23R signaling as a pathogenic driver in Th1-like cells inducing tissue inflammation.
Asunto(s)
Colitis , Receptores de Interleucina , Animales , Inflamación/metabolismo , Interleucina-23/metabolismo , Ratones , Ratones Endogámicos C57BL , Fenotipo , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Células TH1 , Células Th17RESUMEN
AIM: The present study aims to investigate the antimicrobial as well as antivirulence potential and the principle mechanism of action of guaiacol against Pseudomonas aeruginosa. METHODS AND RESULTS: Quorum sensing inhibition and membrane disruption studies were performed to check the effect of guaiacol on the virulence of P. aeruginosa. Production of various virulence factors and biofilm formation was studied at a sub-MIC concentration of guaiacol alone (1/8 MIC) and in combination with ciprofloxacin (1/2 FIC). Guaiacol exhibited synergistic interactions with ciprofloxacin and further reduced the production of all virulence factors and biofilm formation. Using crystal violet (CV) assay and quantification of exopolysaccharide, we observed weak biofilm formation, together with reduced motilities at sub-MIC, which was further visualized by confocal laser microscopy and Field Emission Scanning Electron Microscopy. The antibacterial activity of guaiacol against P. aeruginosa upon 2 × MIC exposure coincided with enhanced membrane permeability leading to disruption and release of cellular material as quantified by CV uptake assay and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The results demonstrated that sub-MICs of guaiacol in combination with ciprofloxacin can act as a potent alternate compound for attenuation of quorum sensing in P. aeruginosa. CONCLUSION: The study reports that guaiacol in combination with ciprofloxacin at 1/2 FIC significantly compromised the bacterial growth and motilities alongside inducing quorum quenching potential. This was accompanied by inhibition of biofilm which subsequently decreased EPS production at sub-MIC concentration. Furthermore, guaiacol in combination displayed a severe detrimental effect on bacterial membrane disruption, thereby enhancing cellular material release. NOVELTY IMPACT STATEMENT: For the first time, the potential of guaiacol in combination with ciprofloxacin in attenuation of virulence factors, and biofilm formation in Pseudomonas aeruginosa was described. Results corroborate how plant bioactive in synergism with antibiotics can act as an alternate treatment regime to tackle the menace of drug resistance.
Asunto(s)
Pseudomonas aeruginosa , Percepción de Quorum , Antibacterianos/farmacología , Biopelículas , Ciprofloxacina/farmacología , Violeta de Genciana/farmacología , Guayacol/farmacología , Dodecil Sulfato de Sodio/farmacología , Factores de VirulenciaRESUMEN
To address the issue of multidrug resistance in Pseudomonas aeruginosa, a novel catechol-zingerone conjugate (1) linked via a non-hydrolyzable 1,2,3-triazole linker was synthesized and subjected to biological evaluation based on the Trojan horse strategy. To enhance the efficacy, catechol, a xenosiderophore, utilized by P. aeruginosa for iron assimilation, and the dietary phytochemical zingerone, known for its anti-virulent activity against Pseudomonas aeruginosa, were exploited in the present study. Theoretical validation of conjugate (1) was conducted by in silico molecular docking analysis to determine the interaction with outer membrane transport receptor PirA and quorum sensing signal receptors. In addition, nine-fold binding affinity of Conjugate (1) toward PirA (5FP2) in comparison to its natural ligand catechol with D-score -1.13 Å authenticated the designed Trojan horse drug. Conjugate (1) showed stronger anti-virulent activity than zingerone; hence, it exhibited a promising anti-biofilm efficacy as assessed by crystal violet assay and visualized by FESEM toward P. aeruginosa. Encouraging results against P. aeruginosa in terms of quorum sensing regulated virulence factors, motility phenotypes, and biofilm formation with no cell cytotoxicity and could help open hitherto unexplored possibilities of establishing Trojan horse drugs as a successful approach against multidrug resistance in P. aeruginosa.
RESUMEN
Aim: To study the influence of plant volatiles, bioactives and synthetic antibiotics on the attenuation of the quorum sensing (QS)-regulated virulence factors of Pseudomonas aeruginosa. Materials & methods: QS inhibition; the QS-regulated virulence factors pyocyanin, hemolysin, elastase, protease, alginate and pyochelin; and motility phenotypes were performed at sub-MIC to check the attenuation effect of 24 agents on the virulence of P. aeruginosa. Results: Eighteen out of 24 assayed compounds exhibited anti-QS activity and reduced the production of all virulence factors. Cinnamaldehyde, zingerone and lavender oil exhibited a significant reduction in motility phenotypes. Conclusion: Natural phytomolecules as a whole or their bioactives could be used to develop antivirulence drugs after in vivo evaluation.
Asunto(s)
Pseudomonas aeruginosa , Percepción de Quorum , Antibacterianos/farmacología , Biopelículas , Factores de Virulencia/genéticaRESUMEN
The valorization of hemicellulose isolated from lignocellulosic biomass (wheat straw, rice husk, and bagasse) to furfural was achieved by pH-controlled acid catalysis using choline-based Brønsted acidic (BA) and natural acidic (NA) deep eutectic solvents (DES) serving both as catalyst and solvent. The effect of pH variation on the catalytic activity of various BADES and NADES prepared in 1 : 1 molar ratio was observed, and choline chloride/p-toluene sulfonic acid (ChCl/p-TSA) was found to be the best with lower pH value of 1.0. The yield of furfural decreased from 85 to 51 % with increase in pH from 1.0 to 3.0. The molar ratio of hydrogen bond donor to acceptor components was varied from 1 : 1 to 1 : 9 to achieve the lowest possible pH values of the DESs and to increase the furfural yield. Further optimization of reaction conditions was also done in terms of DES loading, time of reaction, and temperature using the model DES to achieve higher furfural yield. The best results were obtained using 5â mmol DES at pHâ 1.0 in 1.5â h at 120 °C. ChCl/p-TSA and ChCl/oxalic acid among BADES and ChCl/levulinic acid among NADES investigated in this work yielding 85 % furfural were found to be most efficient. The reported methodology is advantageous in terms of using bio-based green solvents, mild reaction conditions, and efficient scale-up of the reaction. The DESs were found to be efficiently recyclable up to five consecutive runs for the process.
RESUMEN
Metabolism is a major regulator of immune cell function, but it remains difficult to study the metabolic status of individual cells. Here, we present Compass, an algorithm to characterize cellular metabolic states based on single-cell RNA sequencing and flux balance analysis. We applied Compass to associate metabolic states with T helper 17 (Th17) functional variability (pathogenic potential) and recovered a metabolic switch between glycolysis and fatty acid oxidation, akin to known Th17/regulatory T cell (Treg) differences, which we validated by metabolic assays. Compass also predicted that Th17 pathogenicity was associated with arginine and downstream polyamine metabolism. Indeed, polyamine-related enzyme expression was enhanced in pathogenic Th17 and suppressed in Treg cells. Chemical and genetic perturbation of polyamine metabolism inhibited Th17 cytokines, promoted Foxp3 expression, and remodeled the transcriptome and epigenome of Th17 cells toward a Treg-like state. In vivo perturbations of the polyamine pathway altered the phenotype of encephalitogenic T cells and attenuated tissue inflammation in CNS autoimmunity.
Asunto(s)
Autoinmunidad/inmunología , Modelos Biológicos , Células Th17/inmunología , Acetiltransferasas/metabolismo , Adenosina Trifosfato/metabolismo , Aerobiosis/efectos de los fármacos , Algoritmos , Animales , Autoinmunidad/efectos de los fármacos , Cromatina/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Citocinas/metabolismo , Eflornitina/farmacología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Epigenoma , Ácidos Grasos/metabolismo , Glucólisis/efectos de los fármacos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones Endogámicos C57BL , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Oxidación-Reducción/efectos de los fármacos , Putrescina/metabolismo , Análisis de la Célula Individual , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Células Th17/efectos de los fármacos , Transcriptoma/genéticaRESUMEN
In this article, we report the chemical synthesis of pyochelin-zingerone conjugate via a hydrolysable ester linkage for drug delivery as a "Trojan Horse Strategy." It is a new therapeutic approach to combat microbial infection and to address the issue of multi drug resistance in Gram-negative, nosocomial pathogen Pseudomonas aeruginosa. Pyochelin (Pch) is a catecholate type of phenolate siderophore produced and utilized by the pathogen P. aeruginosa to assimilate iron when colonizing the vertebrate host. Zingerone, is active component present in ginger, a dietary herb known for its anti-virulent approach against P. aeruginosa. In the present study, zingerone was exploited to act as a good substitute for existing antibiotics, known to have developed resistance by most pathogens. Encouraging results were obtained by docking analysis of pyochelin-zingerone conjugate with FptA, the outer membrane receptor of pyochelin. Conjugate also showed anti-quorum sensing activity and also inhibited swimming, swarming, and twitching motilities as well as biofilm formation in vitro.
Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Guayacol/análogos & derivados , Fenoles/farmacología , Tiazoles/farmacología , Biopelículas/efectos de los fármacos , Diseño de Fármacos , Farmacorresistencia Bacteriana , Guayacol/química , Guayacol/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Fenoles/química , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum , Tiazoles/químicaRESUMEN
Coronavirus disease 2019 (COVID-19) has been shown to affect the cardiovascular system, and several cases of takotsubo syndrome (TTS) induced by COVID-19 have been reported. TTS predominantly affects postmenopausal women in western countries, but the prevalence in men is higher in Asian populations. It should be noted that male patients with either TTS or COVID-19 are associated with higher mortality. Despite the higher prevalence of TTS in Asian men, little is known about Asian men with TTS induced by COVID-19. This is a case report of a 60-year-old Asian male with biventricular TTS precipitated by COVID-19. He presented with acute respiratory distress syndrome, cardiogenic shock, and acute kidney injury. He required intubation, multiple vasopressors, and renal replacement therapy. The left ventricular ejection fraction was 15%, but it normalized in 5 weeks. The patient had a prolonged hospital stay in a critical condition, but was eventually discharged alive. The scarce literature about this condition in Asian male populations and the increasing number of COVID-19 cases in Asian countries highlight the rarity and importance of this case. Further studies are warranted to investigate the uneven sex distribution and outcomes of TTS triggered by COVID-19 in an Asian population.
RESUMEN
Lichen sclerosus (LS) was first described by Hallopeau in 1887. It is a chronic inflammatory condition most commonly involving the anogenital region with a relapsing course and a potential for destruction, functional impairment, atrophy, and malignant changes. LS affects both sexes with a female preponderance of 5:1. The exact prevalence of the disease is difficult to predict as the lesions are asymptomatic in the initial phase and later when the complications arise patients might visit the surgeon, pediatrician, gynecologist, or urologist. The etiology of LS has a complex interplay of genetic factors, autoimmunity, infections, and trauma. Physical examination to assess the extent of the disease and decide the line of management is the most crucial step in the management. Corticosteroids, calcineurin inhibitor, retinoids, phototherapy, and surgery can be helpful. Self-examination and long-term follow-up are necessary.