Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Prog Mol Biol Transl Sci ; 208: 1-17, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39266179

RESUMEN

Genome editing involves altering of the DNA in organisms including bacteria, plants, and animals using molecular scissors that helps in treatment and diagnosis of various diseases. Genome editing technology is exponentially growing and have been developed for enabling precise genomic alterations and the addition, removal, and correction of genes. These modifications begin with the creation of double-stranded breaks (DSBs) that is generated by nucleases and can be joined through homology-directed repair (HDR) or non-homologous end-joining (NHEJ). NHEJ is quick but increases mutation chances due to deletions and insertions of nucleotides at the break site, while HDR uses homologous templates for precise repair and targeted DNA specific to the gene or sequence. Other methods such as zinc-finger protein is a transcription factor that binds with DNA and binds specific to that sequence, which uniquely recognise 3-base pairs of DNA. TALENs consists of two domains: TALE domain, a transcription activator and FokI that is a restriction endonuclease that cuts the DNA at specific sites. CRISPR-Cas systems are clustered regularly interspersed short palindromic repeats present in various bacterial species. These sequences activate RNA-guided DNA cleavage, aiding in the development of an adaptive immune defence against foreign DNA. CRISPR-Cas9 is widely used for genome editing, regulation, diagnostic and many.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Humanos , Animales
2.
Prog Mol Biol Transl Sci ; 208: 43-58, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39266187

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system possess a broad range of applications for genetic modification, diagnosis and treatment of infectious as well as non-infectious disease. The CRISPR-Cas system is found in bacteria and archaea that possess the Cas protein and guide RNA (gRNA). Cas9 and gRNA forms a complex to target and cleave the desired gene, providing defense against viral infections. Human immunodeficiency virus (HIV), hepatitis B virus (HBV), herpesviruses, human papillomavirus (HPV), and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) cause major life threatening diseases which cannot cure completely by drugs. This chapter describes the present strategy of CRISPR-Cas systems for altering the genomes of viruses, mostly human ones, in order to control infections.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Sistemas CRISPR-Cas/genética , Virosis/genética , Virosis/terapia , Virosis/virología , Virus/genética , Genoma Viral/genética
3.
Prog Mol Biol Transl Sci ; 208: xvii, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39266190

Asunto(s)
Humanos , Animales
4.
Mol Biotechnol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177860

RESUMEN

Bone is a living, intricate, and dynamic tissue providing locomotion and protection of the body. It also performs hematopoiesis and mineral homeostasis. Osteosarcoma (OS), Ewing sarcoma (ES), and chondrosarcoma (CS) are primary bone cancers. OS and ES mostly develop in younger individuals, and CS generally develops in adults. Ubiquitination regulates numerous cellular processes. The deubiquitinating enzymes (DUBs) detach the ubiquitin molecules from the ubiquitin labeled substrate, altering ubiquitinated protein functions and regulating protein stability via various signaling pathways. Protein homeostasis and bone remodeling are both crucially influenced by the UPS. Recently, there have been several reports on DUBs involved in bone homeostasis and various bone disorders through the regulation of osteoblasts and osteoclasts via NF-κB, Wnt/ß-catenin, TRAF6, TGFß, ERK1/2, and PI3K/Akt pathways. However, DUBs regulating function in bone homeostasis is still in its infancy. Here, we summarized several recent identifications on DUBs, with a focus on their role in bone cancer progression. Therefore, the study attempts to summarize association with the expression level of DUBs as key factors driving bone cancers and also provide new insights on DUBs as key pharmacologic targets for bone cancer therapeutics.

5.
Int J Stem Cells ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38952059

RESUMEN

Histone H2B monoubiquitination (H2Bub1) is a dynamic posttranslational modification which are linked to DNA damage and plays a key role in a wide variety of regulatory transcriptional programs. Cancer cells exhibit a variety of epigenetic changes, particularly any aberrant H2Bub1 has frequently been associated with the development of tumors. Nevertheless, our understanding of the mechanisms governing the histone H2B deubiquitination and their associated functions during stem cell differentiation remain only partially understood. In this study, we wished to investigate the role of deubiquitinating enzymes (DUBs) on H2Bub1 regulation during stem cell differentiation. In a search for potential DUBs for H2B monoubiquitination, we identified Usp7, a ubiquitin-specific protease that acts as a negative regulator of H2B ubiquitination during the neuronal differentiation of mouse embryonic carcinoma cells. Loss of function of the Usp7 gene by a CRISPR/Cas9 system during retinoic acid-mediated cell differentiation contributes to the increase in H2Bub1. Furthermore, knockout of the Usp7 gene particularly elevated the expression of neuronal differentiation related genes including astryocyte-specific markers and oligodendrocyte-specific markers. In particular, glial lineage cell-specific transcription factors including oligodendrocyte transcription factor 2, glial fibrillary acidic protein, and SRY-box transcription factor 10 was significantly upregulated during neuronal differentiation. Thus, our findings suggest a novel role of Usp7 in gliogenesis in mouse embryonic carcinoma cells.

6.
Prog Mol Biol Transl Sci ; 207: 321-336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38942542

RESUMEN

Obesity, diabetes, and other metabolic disorders place a huge burden on both the physical health and financial well-being of the community. While the need for effective treatment of metabolic disorders remains urgent and the reality is that traditional drug development involves high costs and a very long time with many pre-clinical and clinical trials, the need for drug repurposing has emerged as a potential alternative. Scientific evidence has shown the anti-diabetic and anti-obesity effects of old drugs, which were initially utilized for the treatment of inflammation, depression, infections, and even cancers. The drug library used modern technological methods to conduct drug screening. Computational molecular docking, genome-wide association studies, or omics data mining are advantageous and unavoidable methods for drug repurposing. Drug repurposing offers a promising avenue for economic efficiency in healthcare, especially for less common metabolic diseases, despite the need for rigorous research and validation. In this chapter, we aim to explore the scientific, technological, and economic issues surrounding drug repurposing for metabolic disorders. We hope to shed light on the potential of this approach and the challenges that need to be addressed to make it a viable option in the treatment of metabolic disorders, especially in the future fight against metabolic disorders.


Asunto(s)
Reposicionamiento de Medicamentos , Enfermedades Metabólicas , Humanos , Enfermedades Metabólicas/tratamiento farmacológico , Animales
7.
Prog Mol Biol Transl Sci ; 207: 337-353, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38942543

RESUMEN

Regenerative medicine and cosmetics are currently two outstanding fields for drug discovery. Although many pharmaceutical products for regenerative medicine and cosmetics have received approval by official agencies, several challenges are still needed to overcome, especially financial and time issues. As a result, drug repositioning, which is the usage of previously approved drugs for new treatment, stands out as a promising approach to tackle these problems. Recently, increasing scientific evidence is collected to demonstrate the applicability of this novel method in the field of regenerative medicine and cosmetics. Experts in drug development have also taken advantage of novel technologies to discover new candidates for repositioning purposes following computational approach, one of two main approaches of drug repositioning. Therefore, numerous repurposed candidates have obtained approval to enter the market and have witnessed financial success such as minoxidil and fingolimod. The benefits of drug repositioning are undeniable for regenerative medicine and cosmetics. However, some aspects still need to be carefully considered regarding this method including actual effectiveness during clinical trials, patent regulations, data integration and analysis, publicly unavailable databases as well as environmental concerns and more effort are required to overcome these obstacles.


Asunto(s)
Cosméticos , Reposicionamiento de Medicamentos , Medicina Regenerativa , Medicina Regenerativa/economía , Humanos , Cosméticos/uso terapéutico , Cosméticos/economía , Animales
8.
Prog Mol Biol Transl Sci ; 207: 79-105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38942546

RESUMEN

Researchers are interested in drug repurposing or drug repositioning of existing pharmaceuticals because of rising costs and slower rates of new medication development. Other investigations that authorized these treatments used data from experimental research and off-label drug use. More research into the causes of depression could lead to more effective pharmaceutical repurposing efforts. In addition to the loss of neurotransmitters like serotonin and adrenaline, inflammation, inadequate blood flow, and neurotoxins are now thought to be plausible mechanisms. Because of these other mechanisms, repurposing drugs has resulted for treatment-resistant depression. This chapter focuses on therapeutic alternatives and their effectiveness in drug repositioning. Atypical antipsychotics, central nervous system stimulants, and neurotransmitter antagonists have investigated for possible repurposing. Nonetheless, extensive research is required to ensure their formulation, effectiveness, and regulatory compliance.


Asunto(s)
Depresión , Reposicionamiento de Medicamentos , Humanos , Depresión/tratamiento farmacológico , Antidepresivos/uso terapéutico , Antidepresivos/farmacología , Animales
9.
Prog Mol Biol Transl Sci ; 205: 1-8, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38789176

RESUMEN

Identification and implementation of novel drug are not only time consuming and expensive but also it poses huge challenge to reach into the market. Currently, thousands of USFDA approved drugs licence are being expired that can be repurposed for treating other diseases. Drug repurposing is an alternative solution to reduce time, cost and steps for development of drugs and their applications for treating disease. The current chapter emphases to brief the steps involved in drug discovery and drug repurposing. The chapter also includes repurposed drugs for treating bacterial, fungal and viral diseases. Unlocking the potential of already existed drug and repurposing them for other diseases that could accelerate drug discovery and aid in managing outbreaks.


Asunto(s)
Reposicionamiento de Medicamentos , Infecciones , Humanos , Descubrimiento de Drogas , Infecciones/tratamiento farmacológico
10.
Prog Mol Biol Transl Sci ; 205: 247-257, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38789182

RESUMEN

High-throughput screening (HTS) is a simple, rapid and cost-effective solution to determine active candidates from large library of compounds. HTS is gaining attention from Pharmaceuticals and Biotechnology companies for accelerating their drug discovery programs. Conventional drug discovery program is time consuming and expensive. In contrast drug repurposing approach is cost-effective and increases speed of drug discovery as toxicity profile is already known. The present chapter highlight HTS technology including microplate, microfluidics, lab-on-chip, organ-on-chip for drug repurposing. The current chapter also highlights the application of HTS for bacterial infections and cancer.


Asunto(s)
Reposicionamiento de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Animales , Descubrimiento de Drogas/métodos
11.
Prog Mol Biol Transl Sci ; 205: 277-302, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38789184

RESUMEN

The field of drug repurposing is gaining attention as a way to introduce pharmaceutical agents with established safety profiles to new patient populations. This approach involves finding new applications for existing drugs through observations or deliberate efforts to understand their mechanisms of action. Recent advancements in bioinformatics and pharmacology, along with the availability of extensive data repositories and analytical techniques, have fueled the demand for novel methodologies in pharmaceutical research and development. To facilitate systematic drug repurposing, various computational methodologies have emerged, combining experimental techniques and in silico approaches. These methods have revolutionized the field of drug discovery by enabling the efficient repurposing of screens. However, establishing an ideal drug repurposing pipeline requires the integration of molecular data accessibility, analytical proficiency, experimental design expertise, and a comprehensive understanding of clinical development processes. This chapter explores the key methodologies used in systematic drug repurposing and discusses the stakeholders involved in this field. It emphasizes the importance of strategic alliances to enhance the success of repurposing existing compounds for new indications. Additionally, the chapter highlights the current benefits, considerations, and challenges faced in the repurposing process, which is pursued by both biotechnology and pharmaceutical companies. Overall, drug repurposing holds great promise in expanding the use of existing drugs and bringing them to new patient populations. With the advancements in computational methodologies and the collaboration of various stakeholders, this approach has the potential to accelerate drug development and improve patient outcomes.


Asunto(s)
Productos Biológicos , Reposicionamiento de Medicamentos , Reposicionamiento de Medicamentos/métodos , Humanos , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Biología Computacional/métodos , Descubrimiento de Drogas/métodos
12.
Prog Mol Biol Transl Sci ; 205: 213-220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38789179

RESUMEN

Currently, millions of drugs and their licence have been expired or will be expiring in near future. Therefore, existing USFDA approved drug can be used for treating another disease. The above-mentioned approach falls under the category of drug repurposing. Drug repurposing is an alternative strategy for finding new applications of existing USFDA approved drugs. Identification of a novel drug target is one of the go to way for drug repurposing so that new therapeutic applications of USFDA approved drugs could be determined. Recent advances in computational biology and bioinformatics can help to accelerate the same. Drug repurposing can save time and resource as compared to discovery of an entirely new drug molecule. In this chapter, we explore different strategies for discovery of a novel drug target and its uses for drug repurposing to treat disease.


Asunto(s)
Reposicionamiento de Medicamentos , Humanos , Biología Computacional/métodos , Descubrimiento de Drogas , Terapia Molecular Dirigida
13.
Plant Physiol Biochem ; 210: 108602, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608506

RESUMEN

Plant mineral nutrition has immense significance for crop productivity and human well-being. Soil acidity plays a major role in determining the nutrient availability that influences plant growth. The importance of calcium (Ca) in biological processes, such as signaling, metabolism, and cell growth, underlines its critical role in plant growth and development. This review focuses on soil acidification, a gradual process resulting from cation leaching, fertilizer utilization, and drainage issues. Soil acidification significantly hampers global crop production by modifying nutrient accessibility. In acidic soils, essential nutrients, such as nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and Ca become less accessible, establishing a correlation between soil pH and plant nutrition. Cutting-edge Ca nutrition technologies, including nanotechnology, genetic engineering, and genome sequencing, offer the potential to deliver Ca and reduce the reliance on conventional soluble fertilizers. These fertilizers not only contribute to environmental contamination but also impose economic burdens on farmers. Nanotechnology can enhance nutrient uptake, and Ca nanoparticles improve nutrient absorption and release. Genetic engineering enables the cultivation of acid-tolerant crop varieties by manipulating Ca-related genes. High-throughput technologies such as next-generation sequencing and microarrays aid in identifying the microbial structures, functions, and biosynthetic pathways involved in managing plant nutritional stress. The ultimate goal is to shed light on the importance of Ca, problems associated with soil acidity, and potential of emerging technologies to enhance crop production while minimizing the environmental impact and economic burden on farmers.


Asunto(s)
Calcio , Suelo , Calcio/metabolismo , Productos Agrícolas , Fertilizantes , Concentración de Iones de Hidrógeno , Fenómenos Fisiológicos de las Plantas , Suelo/química
14.
Cell Mol Life Sci ; 81(1): 145, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498222

RESUMEN

Cisplatin is a chemotherapy drug that causes a plethora of DNA lesions and inhibits DNA transcription and replication, resulting in the induction of apoptosis in cancer cells. However, over time, patients develop resistance to cisplatin due to repeated treatment and thus the treatment efficacy is limited. Therefore, identifying an alternative therapeutic strategy combining cisplatin treatment along with targeting factors that drive cisplatin resistance is needed. CRISPR/Cas9 system-based genome-wide screening for the deubiquitinating enzyme (DUB) subfamily identified USP28 as a potential DUB that governs cisplatin resistance. USP28 regulates the protein level of microtubule-associated serine/threonine kinase 1 (MAST1), a common kinase whose expression is elevated in several cisplatin-resistant cancer cells. The expression level and protein turnover of MAST1 is a major factor driving cisplatin resistance in many cancer types. Here we report that the USP28 interacts and extends the half-life of MAST1 protein by its deubiquitinating activity. The expression pattern of USP28 and MAST1 showed a positive correlation across a panel of tested cancer cell lines and human clinical tissues. Additionally, CRISPR/Cas9-mediated gene knockout of USP28 in A549 and NCI-H1299 cells blocked MAST1-driven cisplatin resistance, resulting in suppressed cell proliferation, colony formation ability, migration and invasion in vitro. Finally, loss of USP28 destabilized MAST1 protein and attenuated tumor growth by sensitizing cells to cisplatin treatment in mouse xenograft model. We envision that targeting the USP28-MAST1 axis along with cisplatin treatment might be an alternative therapeutic strategy to overcome cisplatin resistance in cancer patients.


Asunto(s)
Cisplatino , Neoplasias , Animales , Humanos , Ratones , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos , Proteínas Asociadas a Microtúbulos , Microtúbulos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Serina-Treonina Quinasas/genética , Ubiquitina Tiolesterasa
15.
Sci Rep ; 13(1): 22289, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38097607

RESUMEN

Currently, the global demand for polyhydroxyalkanoates (PHAs) is significantly increasing. PHAs are produced by several bacteria that are an alternative source of synthetic polymers derived from petrochemical refineries. This study established a simple and more feasible process of PHA production by Halomonas alkaliantarctica using dairy waste as the only carbon source. The data confirmed that the analyzed halophile could metabolize cheese whey (CW) and cheese whey mother liquor (CWML) into biopolyesters. The highest yield of PHAs was 0.42 g/L in the cultivation supplemented with CWML. Furthermore, it was proved that PHA structure depended on the type of by-product from cheese manufacturing, its concentration, and the culture time. The results revealed that H. alkaliantarctica could produce P(3HB-co-3HV) copolymer in the cultivations with CW at 48 h and 72 h without adding of any precursors. Based on the data obtained from physicochemical and thermal analyses, the extracted copolymer was reported to have properties suitable for various applications. Overall, this study described a promising approach for valorizing of dairy waste as a future strategy of industrial waste management to produce high value microbial biopolymers.


Asunto(s)
Halomonas , Polihidroxialcanoatos , Polihidroxialcanoatos/química , Biopolímeros , Residuos Industriales , Proteína de Suero de Leche
16.
Crit Rev Biotechnol ; : 1-18, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932016

RESUMEN

The circular economy is anticipated to bring a disruptive transformation in manufacturing technologies. Robust and industrial scalable microbial strains that can simultaneously assimilate and valorize multiple carbon substrates are highly desirable, as waste bioresources contain substantial amounts of renewable and fermentable carbon, which is diverse. Lignocellulosic biomass (LCB) is identified as an inexhaustible and alternative resource to reduce global dependence on oil. Glucose, xylose, and arabinose are the major monomeric sugars in LCB. However, primary research has focused on the use of glucose. On the other hand, the valorization of pentose sugars, xylose, and arabinose, has been mainly overlooked, despite possible assimilation by vast microbial communities. The present review highlights the research efforts that have explicitly proven the suitability of arabinose as the starting feedstock for producing various chemical building blocks via biological routes. It begins by analyzing the availability of various arabinose-rich biorenewable sources that can serve as potential feedstocks for biorefineries. The subsequent section outlines the current understanding of arabinose metabolism, biochemical routes prevalent in prokaryotic and eukaryotic systems, and possible products that can be derived from this sugar. Further, currently, exemplar products from arabinose, including arabitol, 2,3-butanediol, 1,2,3-butanetriol, ethanol, lactic acid, and xylitol are discussed, which have been produced by native and non-native microbial strains using metabolic engineering and genome editing tools. The final section deals with the challenges and obstacles associated with arabinose-based production, followed by concluding remarks and prospects.

17.
Biochem Biophys Res Commun ; 682: 27-38, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37801987

RESUMEN

The solute carrier family 35 F2 (SLC35F2) belongs to membrane-bound carrier proteins that are associated with multiple cancers. The main factor that determines cancer progression is the expression level of SLC35F2. Thus, identifying the E3 ligase that controls SLC35F2 protein abundance in cancer cells is critical. Here, we identified ßTrCP1 interacting with and reducing the SLC35F2 protein level. ßTrCP1 signals SLC35F2 protein ubiquitination and reduces SLC35F2 protein half-life. The mRNA expression pattern between ßTrCP1 and SLC35F2 across a panel of cancer cell lines showed a negative correlation. Additionally, the depletion of ßTrCP1 accumulated SLC35F2 protein and promoted SLC35F2-mediated cell growth, migration, invasion, and colony formation ability in HeLa cells. Overall, we demonstrate that ßTrCP1 acts as a tumor suppressor by controlling SLC35F2 protein abundance in cancer cells. The depletion of ßTrCP1 promotes SLC35F2-mediated carcinogenesis. Thus, we envision that ßTrCP1 may be a potential target for cancer therapeutics.


Asunto(s)
Neoplasias , Ubiquitina-Proteína Ligasas , Humanos , Células HeLa , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ciclo Celular , Línea Celular Tumoral , Neoplasias/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
18.
Bioresour Technol ; 389: 129808, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806362

RESUMEN

Lutein, a bioactive xanthophyll, has recently attracted significant attention for numerous health benefits, e.g., protection of eye health, macular degeneration, and acute and chronic syndromes etc. Microalgae have emerged as the best platform for high-value lutein production with high productivity, lutein content, and scale-up potential. Algal lutein possesses numerous bioactivities, hence widely used in pharmaceuticals, nutraceuticals, aquaculture, cosmetics, etc. This review highlights advances in upstream lutein production enhancement and feasible downstream extraction and cell disruption techniques for a large-scale lutein biorefinery. Besides bioprocess-related advances, possible solutions for existing production challenges in microalgae-based lutein biorefinery, market potential, and emerging commercial scopes of lutein and its potential health applications are also discussed. The key enzymes involved in the lutein biosynthesizing Methyl-Erythritol-phosphate (MEP) pathway have been briefly described. This review provides a comprehensive updates on lutein research advancements covering scalable upstream and downstream production strategies and potential applications for researchers and industrialists.


Asunto(s)
Luteína , Microalgas , Microalgas/metabolismo , Biomasa , Suplementos Dietéticos , Fosfatos/metabolismo
19.
Environ Res ; 237(Pt 2): 117100, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37689336

RESUMEN

The levels of pesticides in air, water, and soil are gradually increasing due to its inappropriate management. In particular, agricultural runoff inflicts the damages on the ecosystem and human health at massive scale. Present study summarizes 70 studies in which investigations on removal or treatment of pesticides/insecticides/herbicides are reported. A bibliometric analysis was also done to understand the recent research trends through the analysis of 2218 publications. The specific objectives of this study are as follows: i) to inventorize the characteristics details of agriculture runoff and analyzing the occurrence and impacts of pesticides, ii) analyzing the role and interaction of pesticides in different environmental segments, iii) investigating the fate of pesticides in agriculture runoff treatment systems, iv) summarizing the experiences and findings of most commonly technology deployed for pesticides remediation in agriculture runoff including target pesticide(s), specifications, configuration of technological intervention. Among the reported technologies for pesticide treatment in agriculture runoff, constructed wetland was at the top followed by algal or photobioreactor. Among various advanced oxidation processes, photo Fenton method is mainly used for pesticides remediation such as triazine, methyl parathion, fenuron and diuron. Algal bioreactors are extensively used for a wide range of pesticides treatment including 2,4-Dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, alachlor, diuron, chlorpyrifos, endosulfan, and imidacloprid; especially at lower hydraulic retention time of 2-6 h. This study highlights that hybrid approaches can offers potential opportunities for effective removal of pesticides in a more viable manner.

20.
Prog Mol Biol Transl Sci ; 201: 191-201, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37770171

RESUMEN

Viruses being the natural carriers of gene have been widely used as drug delivery systems. However, the commonly used eukaryotic viruses such as adenoviruses, retroviruses, and lentiviruses, besides efficiently targeting the cells, can also stimulate immunological response or disrupt tumour suppressor genes leading to cancer. Consequently, there has been an increase interest in the scientific fraternity towards exploring other alternatives, which are safer and equally efficient for drug delivery. Bacteriophages, in this context have been at the forefront as an efficient, reliable, and safer choice. Novel phage dependent technologies led the foundation of peptide libraries and provides way to recognising abilities and targeting of specific ligands. Hybridisation of phage with inorganic complexes could be an appropriate strategy for the construction of carrying bioinorganic carriers. In this chapter, we have tried to cover major advances in the phage species that can be used as drug delivery vehicles.


Asunto(s)
Bacteriófagos , Neoplasias , Humanos , Bacteriófagos/genética , Sistemas de Liberación de Medicamentos , Biblioteca de Péptidos , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...