Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
3.
Front Plant Sci ; 14: 1231676, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692412

RESUMEN

Turmeric (Curcuma longa L.), a significant commercial crop of the Indian subcontinent is widely used as a condiment, natural dye, and as a cure for different ailments. Various bioactive compounds such as turmerones and curcuminoids have been isolated from C. longa that have shown remarkable medicinal activity against various ailments. However, reduced soil fertility, climatic variations, rapid urbanization, and enhanced food demand, pose a multifaceted challenge to the current agricultural practices of C. longa. Plant growth-promoting microbes play a vital role in plant growth and development by regulating primary and secondary metabolite production. Rhizospheric associations are complex species-specific interconnections of different microbiota with a plant that sustain soil health and promote plant growth through nutrient acquisition, nitrogen fixation, phosphate availability, phytohormone production, and antimicrobial activities. An elaborative study of microbiota associated with the roots of C. longa is essential for rhizospheric engineering as there is a huge potential to develop novel products based on microbial consortium formulations and elicitors to improve plant health, stress tolerance, and the production of secondary metabolites such as curcumin. Primarily, the purpose of this review is to implicate the rhizospheric microbial flora as probiotics influencing overall C. longa health, development, and survival for an increase in biomass, enhanced yield of secondary metabolites, and sustainable crop production.

4.
J Biol Chem ; 299(7): 104903, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37302551

RESUMEN

The spider venom protein, double-knot toxin (DkTx), partitions into the cellular membrane and binds bivalently to the pain-sensing ion channel, TRPV1, triggering long-lasting channel activation. In contrast, its monovalent single knots membrane partition poorly and invoke rapidly reversible TRPV1 activation. To discern the contributions of the bivalency and membrane affinity of DkTx to its sustained mode of action, here, we developed diverse toxin variants including those containing truncated linkers between individual knots, precluding bivalent binding. Additionally, by appending the single-knot domains to the Kv2.1 channel-targeting toxin, SGTx, we created monovalent double-knot proteins that demonstrated higher membrane affinity and more sustained TRPV1 activation than the single-knots. We also produced hyper-membrane affinity-possessing tetra-knot proteins, (DkTx)2 and DkTx-(SGTx)2, that demonstrated longer-lasting TRPV1 activation than DkTx, establishing the central role of the membrane affinity of DkTx in endowing it with its sustained TRPV1 activation properties. These results suggest that high membrane affinity-possessing TRPV1 agonists can potentially serve as long-acting analgesics.


Asunto(s)
Membrana Celular , Venenos de Araña , Canales Catiónicos TRPV , Membrana Celular/metabolismo , Venenos de Araña/química , Venenos de Araña/metabolismo , Animales , Canales Catiónicos TRPV/metabolismo , Dolor/metabolismo , Unión Proteica , Analgésicos , Transporte Iónico
5.
Bioconjug Chem ; 33(9): 1761-1770, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36073164

RESUMEN

Peptide toxins secreted by venomous animals bind to mammalian ion channel proteins and modulate their function. The high specificity of these toxins for their target ion channels enables them to serve as powerful tools for ion channel biology. Toxins labeled with fluorescent dyes are employed for the cellular imaging of channels and also for studying toxin-channel and toxin-membrane interactions. Several of these toxins are cysteine-rich, rendering the production of properly folded fluorescently labeled toxins technically challenging. Herein, we evaluate a variety of site-specific protein bioconjugation approaches for producing fluorescently labeled double-knot toxin (DkTx), a potent TRPV1 ion channel agonist that contains an uncommonly large number of cysteines (12 out of a total of 75 amino acids present in the protein). We find that popular cysteine-mediated bioconjugation approaches are unsuccessful as the introduction of a non-native cysteine residue for thiol modification leads to the formation of misfolded toxin species. Moreover, N-terminal aldehyde-mediated bioconjugation approaches are also not suitable as the resultant labeled toxin lacks activity. In contrast to these approaches, C-terminal bioconjugation of DkTx via the sortase bioconjugation technology yields functionally active fluorescently labeled DkTx. We employ this labeled toxin for imaging rat TRPV1 heterologously expressed in Xenopus laevis oocytes, as well as for performing membrane binding studies on giant unilamellar vesicles composed of different lipid compositions. Our studies set the stage for using fluorescent DkTx as a tool for TRPV1 biology and provide an informative blueprint for labeling cysteine-rich proteins.


Asunto(s)
Cisteína , Toxinas Biológicas , Aldehídos , Animales , Cisteína/química , Colorantes Fluorescentes , Lípidos , Mamíferos/metabolismo , Péptidos/química , Ratas , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Liposomas Unilamelares
6.
J Genet Eng Biotechnol ; 19(1): 35, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33620593

RESUMEN

BACKGROUND: Dalbergia sissoo (shisham), an important multipurpose tree native to the Indian subcontinent and also planted in other countries, has been afflicted with large scale mortality in all age groups due to wilt disease, causing huge economic losses. Fusarium solani f. sp. dalbergiae (Fsd) has been identified as one of the causal organisms for wilt disease in D. sissoo. One of the approaches of disease resistance studies involves co-cultivation of trees and pathogens under controlled conditions to screen resistant tree genotypes. A gnotobiotic condition, where the pathogen is known, enables accurate screening of disease-resistant genotypes. In the present study, ten genotypes of D. sissoo were cloned in vitro and evaluated against two strains of Fsd in a dual culture setup under gnotobiotic conditions with an objective to identify resistant genotypes of D. sissoo against Fsd. RESULTS: Callus and plantlets of ten genotypes of host plant multiplied in vitro were inoculated with conidial suspension of two strains of Fsd at three concentrations; 1 × 101, 1 × 103, and 1 × 105 conidia/ml. Gnotobiotic evaluation of dual culture setup shows variations among genotypes in their response towards in vitro Fsd infection; and two genotypes (14 and 66) exhibited resistance against Fsd strains. Callus of genotypes 14 and 66 significantly restricted the fungal mycelium growth whereas callus of remaining genotypes was completely infested by Fsd mycelium within 9 days. Similarly, plantlets of genotype 14 and 66 had lesser disease severity and remained green and had fewer necrotic lesions in roots whereas plantlets of the remaining eight genotypes died within 15 days. CONCLUSION: Gnotobiotic evaluation of callus and plantlets of ten genotypes of D. sissoo against Fsd strains has reduced time and space otherwise required for field trials. Genetic variations amongst the genotypes resulted in varying responses towards virulent Fsd strains and only two out of ten genotypes showed promising resistant characteristics. In dual culture setup, both callus and plantlets of the same genotypes responded similarly against Fsd strains, which signify that in vitro screening can be used as an indirect selection method for disease resistance.

7.
ACS Chem Biol ; 13(9): 2689-2698, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30080384

RESUMEN

The roles of surrounding membrane lipids in the functions of transmembrane and peripheral membrane proteins are largely unknown. Herein, we utilize the recently reported structures of the TRPV1 ion channel protein bound to its potent protein agonist, the double-knot toxin (DkTx), as a model system to investigate the roles of toxin-lipid interfaces in TRPV1 activation by characterizing a series of DkTx variants electrophysiologically. Together with membrane partitioning experiments, these studies reveal that toxin-lipid interfaces play an overwhelmingly dominant role in channel activation as compared to lipid-devoid toxin-channel interfaces. Additionally, we find that whereas the membrane interfaces formed by one of the knots of the toxin endow it with its low channel-dissociation rate, those formed by other knot contribute primarily to its potency. These studies establish that protein-lipid interfaces play nuanced yet profound roles in the function of protein-protein complexes within membranes.


Asunto(s)
Arácnidos/metabolismo , Proteínas de Artrópodos/metabolismo , Lípidos de la Membrana/metabolismo , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/metabolismo , Animales , Modelos Moleculares , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA