Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Sci Rep ; 14(1): 22670, 2024 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349529

RESUMEN

Cancer ranks as the second leading cause of mortality worldwide, prompting extensive investigations into factors contributing to its development. Among these factors, genetic variations, known as genotypic polymorphisms, have been identified as significant influencers in the susceptibility to various types of cancer. Recent research has focused on exploring the connection between polymorphisms in the Long Non-coding RNA HOTAIR and cancer risk. However, the results from these studies have been inconsistent, leading to ambiguity and controversy. To address this uncertainty, we conducted a systematic analysis by gathering relevant studies from PubMed, EMBASE, and Google Scholar. Specifically, we focused on three well-studied polymorphisms within the HOTAIR lncRNA (HOTAIR rs920778 C > T, HOTAIR rs1899663 G > T, HOTAIR rs4759314 A > G) and their association with cancer risk. Our meta-analysis included data from 48 case-control studies involving 42,321 cases and 54,137 controls. The results of our updated meta-analysis revealed a significant correlation between HOTAIR rs1899663 G > T and HOTAIR rs4759314 A > G polymorphisms and overall cancer risk, particularly in the homozygous and recessive genetic models. Subgroup analysis further revealed that these associations were notably pronounced in the Asian population but not observed in the Iranian population. Furthermore, our findings underscore the potential of HOTAIR polymorphisms as diagnostic markers for overall cancer risk, particularly in gynecological cancers, precisely, HOTAIR rs1899663 G > T polymorphism in breast cancer. In conclusion, our systematic analysis provides compelling evidence that Long Non-coding RNA HOTAIR polymorphisms are linked to cancer risk, particularly in certain populations and cancer types, suggesting their potential clinical relevance as diagnostic indicators.


Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias , Polimorfismo de Nucleótido Simple , ARN Largo no Codificante , Humanos , Estudios de Casos y Controles , Neoplasias/epidemiología , Neoplasias/genética , Factores de Riesgo , ARN Largo no Codificante/genética
2.
Biochem Pharmacol ; 229: 116498, 2024 11.
Artículo en Inglés | MEDLINE | ID: mdl-39159874

RESUMEN

Gynecological cancers, including ovarian, cervical, endometrial, and vulvar cancers, present significant challenges in diagnosis and treatment globally. The tumor microenvironment (TME) plays a pivotal role in cancer progression and therapy response, necessitating a deeper understanding of its composition and dynamics. This review offers a comprehensive overview of the gynecological cancer tumor microenvironment, emphasizing its cellular complexity and therapeutic potential. The diverse cellular components of the TME, including cancer cells, immune cells, stromal cells, and extracellular matrix elements, are explored, elucidating their interplay in shaping tumor behavior and treatment outcomes. Across various stages of cancer progression, the TME exerts profound effects on tumor heterogeneity, immune modulation, angiogenesis, and metabolic reprogramming. The urgency for novel therapeutic strategies is underscored by understanding immune evasion mechanisms within the TME. Emerging approaches such as immunotherapy, stromal-targeting therapies, anti-angiogenic agents, and metabolic inhibitors are discussed, offering promising avenues for improving patient outcomes. Interdisciplinary collaborations and translational research are emphasized, aiming to advance precision oncology and enhance therapeutic efficacy in gynecological cancers.


Asunto(s)
Neoplasias de los Genitales Femeninos , Microambiente Tumoral , Humanos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología , Femenino , Neoplasias de los Genitales Femeninos/terapia , Neoplasias de los Genitales Femeninos/patología , Animales , Inmunoterapia/métodos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
3.
J Clin Med ; 13(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39124569

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is a major axis of phenotypic plasticity not only in diseased conditions such as cancer metastasis and fibrosis but also during normal development and wound healing. Yet-another important axis of plasticity with metastatic implications includes the cancer stem cell (CSCs) and non-CSC transitions. However, in both processes, epithelial (E) and mesenchymal (M) phenotypes are not merely binary states. Cancer cells acquire a spectrum of phenotypes with traits, properties, and markers of both E and M phenotypes, giving rise to intermediary hybrid (E/M) phenotypes. E/M cells play an important role in tumor initiation, metastasis, and disease progression in multiple cancers. Furthermore, the hybrid phenotypes also play a major role in causing therapeutic resistance in cancer. Here, we discuss how a systems biology perspective on the problem, which is implicit in the 'Team Medicine' approach outlined in the theme of this Special Issue of The Journal of Clinical Medicine and includes an interdisciplinary team of experts, is more likely to shed new light on EMT in cancer and help us to identify novel therapeutics and strategies to target phenotypic plasticity in cancer.

4.
Cancers (Basel) ; 16(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39001539

RESUMEN

The rise of drug resistance in cancer cells presents a formidable challenge in modern oncology, necessitating the exploration of innovative therapeutic strategies. This review investigates the latest advancements in overcoming drug resistance mechanisms employed by cancer cells, focusing on emerging therapeutic modalities. The intricate molecular insights into drug resistance, including genetic mutations, efflux pumps, altered signaling pathways, and microenvironmental influences, are discussed. Furthermore, the promising avenues offered by targeted therapies, combination treatments, immunotherapies, and precision medicine approaches are highlighted. Specifically, the synergistic effects of combining traditional cytotoxic agents with molecularly targeted inhibitors to circumvent resistance pathways are examined. Additionally, the evolving landscape of immunotherapeutic interventions, including immune checkpoint inhibitors and adoptive cell therapies, is explored in terms of bolstering anti-tumor immune responses and overcoming immune evasion mechanisms. Moreover, the significance of biomarker-driven strategies for predicting and monitoring treatment responses is underscored, thereby optimizing therapeutic outcomes. For insights into the future direction of cancer treatment paradigms, the current review focused on prevailing drug resistance challenges and improving patient outcomes, through an integrative analysis of these emerging therapeutic strategies.

5.
J Clin Med ; 13(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39064229

RESUMEN

The leading cause of cancer deaths worldwide is attributed to non-small cell lung cancer (NSCLC), necessitating a continual focus on improving the diagnosis and treatment of this disease. In this review, the latest breakthroughs and emerging trends in managing NSCLC are highlighted. Major advancements in diagnostic methods, including better imaging technologies and the utilization of molecular biomarkers, are discussed. These advancements have greatly enhanced early detection and personalized treatment plans. Significant improvements in patient outcomes have been achieved by new targeted therapies and immunotherapies, providing new hope for individuals with advanced NSCLC. This review discusses the persistent challenges in accessing advanced treatments and their associated costs despite recent progress. Promising research into new therapies, such as CAR-T cell therapy and oncolytic viruses, which could further revolutionize NSCLC treatment, is also highlighted. This review aims to inform and inspire continued efforts to improve outcomes for NSCLC patients globally, by offering a comprehensive overview of the current state of NSCLC treatment and future possibilities.

6.
Carcinogenesis ; 45(9): 696-707, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39051454

RESUMEN

Ral-binding/interacting protein (RLIP) acts as a transporter that responds to stress and provides protection, specifically against glutathione-electrophile conjugates and xenobiotic toxins. Its increased presence in malignant cells, especially in cancer, emphasizes its crucial antiapoptotic function. This is achieved by selectively regulating the cellular levels of proapoptotic oxidized lipid byproducts. Suppressing the progression of tumors in human xenografts can be achieved by effectively inhibiting RLIP, a transporter in the mercapturic acid pathway, without involving chemotherapy. Utilizing ovarian cancer (OC) cell lines (MDAH2774, OVCAR4, and OVCAR8), we observed that agents targeting RLIP, such as RLIP antisense and RLIP antibodies, not only substantially impeded the viability of OC cells but also remarkably increased their sensitivity to carboplatin. To delve further into the cytotoxic synergy between RLIP antisense, RLIP antibodies, and carboplatin, we conducted investigations in both cell culture and xenografts of OC cells. The outcomes revealed that RLIP depletion via phosphorothioate antisense led to rapid and sustained remissions in established subcutaneous human ovary xenografts. Furthermore, RLIP inhibition by RLIP antibodies exhibited comparable efficacy to antisense and enhanced the effectiveness of carboplatin in MDAH2774 OC xenografts. These investigations underscore RLIP as a central carrier crucial for supporting the survival of cancer cells, positioning it as a suitable focus for cancer treatment.


Asunto(s)
Carboplatino , Neoplasias Ováricas , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Animales , Carboplatino/farmacología , Ratones , Línea Celular Tumoral , Antineoplásicos/farmacología , Ratones Desnudos , Apoptosis/efectos de los fármacos , Acetilcisteína/farmacología , Transportadoras de Casetes de Unión a ATP , Proteínas Activadoras de GTPasa
7.
iScience ; 27(6): 110132, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38993482

RESUMEN

Although up to 80% small cell lung cancer (SCLC) patients' response is good for first-line chemotherapy regimen, most patients develop recurrence of the disease within weeks to months. Here, we report cytostatic effect of leflunomide (Leflu) and teriflunomide (Teri) on SCLC cell proliferation through inhibition of DRP1 phosphorylation at Ser616 and decreased mitochondrial fragmentation. When administered together, Teri and carboplatin (Carbo) act synergistically to significantly inhibit cell proliferation and DRP1 phosphorylation, reduce abundance of intermediates in pyrimidine de novo pathway, and increase apoptosis and DNA damage. Combination of Leflu&Carbo has anti-tumorigenic effect in vivo. Additionally, lurbinectedin (Lur) and Teri potently and synergistically inhibited spheroid growth and depleted uridine and DRP1 phosphorylation in mouse tumors. Our results suggest combinations of Carbo and Lur with Teri or Leflu are efficacious and underscore how the relationship between DRP1/DHODH and mitochondrial plasticity serves as a potential therapeutic target to validate these treatment strategies in SCLC clinical trials.

8.
J Clin Med ; 13(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38929995

RESUMEN

Nanoengineering has emerged as a progressive method in cancer treatment, offering precise and targeted delivery of therapeutic agents while concurrently reducing overall toxicity. This scholarly article delves into the innovative strategies and advancements in nanoengineering that bridge the gap between clinical practice and research in the field of cancer treatment. Various nanoengineered platforms such as nanoparticles, liposomes, and dendrimers are scrutinized for their capacity to encapsulate drugs, augment drug efficacy, and enhance pharmacokinetics. Moreover, the article investigates research breakthroughs that drive the progression and enhancement of nanoengineered remedies, encompassing the identification of biomarkers, establishment of preclinical models, and advancement of biomaterials, all of which are imperative for translating laboratory findings into practical medical interventions. Furthermore, the integration of nanotechnology with imaging modalities, which amplify cancer detection, treatment monitoring, and response assessment, is thoroughly examined. Finally, the obstacles and prospective directions in nanoengineering, including regulatory challenges and issues related to scalability, are examined. This underscores the significance of fostering collaboration among various entities in order to efficiently translate nanoengineered interventions into enhanced cancer therapies and patient management.

9.
J Clin Med ; 13(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38893049

RESUMEN

Cancer cells, like all other organisms, are adept at switching their phenotype to adjust to the changes in their environment. Thus, phenotypic plasticity is a quantitative trait that confers a fitness advantage to the cancer cell by altering its phenotype to suit environmental circumstances. Until recently, new traits, especially in cancer, were thought to arise due to genetic factors; however, it is now amply evident that such traits could also emerge non-genetically due to phenotypic plasticity. Furthermore, phenotypic plasticity of cancer cells contributes to phenotypic heterogeneity in the population, which is a major impediment in treating the disease. Finally, plasticity also impacts the group behavior of cancer cells, since competition and cooperation among multiple clonal groups within the population and the interactions they have with the tumor microenvironment also contribute to the evolution of drug resistance. Thus, understanding the mechanisms that cancer cells exploit to tailor their phenotypes at a systems level can aid the development of novel cancer therapeutics and treatment strategies. Here, we present our perspective on a team medicine-based approach to gain a deeper understanding of the phenomenon to develop new therapeutic strategies.

10.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189106, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701936

RESUMEN

Cervical cancer remains a significant global health burden, necessitating innovative approaches for improved diagnostics and personalized treatment strategies. Precision medicine has emerged as a promising paradigm, leveraging biomarkers and molecular targets to tailor therapy to individual patients. This review explores the landscape of emerging biomarkers and molecular targets in cervical cancer, highlighting their potential implications for precision medicine. By integrating these biomarkers into comprehensive diagnostic algorithms, clinicians can identify high-risk patients at an earlier stage, enabling timely intervention and improved patient outcomes. Furthermore, the identification of specific molecular targets has paved the way for the development of targeted therapies aimed at disrupting key pathways implicated in cervical carcinogenesis. In conclusion, the evolving landscape of biomarkers and molecular targets presents exciting opportunities for advancing precision medicine in cervical cancer. By harnessing these insights, clinicians can optimize treatment selection, enhance patient outcomes, and ultimately transform the management of this devastating disease.


Asunto(s)
Biomarcadores de Tumor , Terapia Molecular Dirigida , Medicina de Precisión , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/diagnóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Femenino , Terapia Molecular Dirigida/métodos
11.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189026, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37980945

RESUMEN

Gynecological cancers including breast, cervical, ovarian, uterine, and vaginal, pose the greatest threat to world health, with early identification being crucial to patient outcomes and survival rates. The application of machine learning (ML) and artificial intelligence (AI) approaches to the study of gynecological cancer has shown potential to revolutionize cancer detection and diagnosis. The current review outlines the significant advancements, obstacles, and prospects brought about by AI and ML technologies in the timely identification and accurate diagnosis of different types of gynecological cancers. The AI-powered technologies can use genomic data to discover genetic alterations and biomarkers linked to a particular form of gynecologic cancer, assisting in the creation of targeted treatments. Furthermore, it has been shown that the potential benefits of AI and ML technologies in gynecologic tumors can greatly increase the accuracy and efficacy of cancer diagnosis, reduce diagnostic delays, and possibly eliminate the need for needless invasive operations. In conclusion, the review focused on the integrative part of AI and ML based tools and techniques in the early detection and exclusion of various cancer types; together with a collaborative coordination between research clinicians, data scientists, and regulatory authorities, which is suggested to realize the full potential of AI and ML in gynecologic cancer care.


Asunto(s)
Inteligencia Artificial , Neoplasias de los Genitales Femeninos , Femenino , Humanos , Aprendizaje Automático , Neoplasias de los Genitales Femeninos/diagnóstico , Neoplasias de los Genitales Femeninos/genética , Mama , Genómica
12.
Sci Adv ; 9(41): eade3816, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831779

RESUMEN

Inherent or acquired resistance to sotorasib poses a substantialt challenge for NSCLC treatment. Here, we demonstrate that acquired resistance to sotorasib in isogenic cells correlated with increased expression of integrin ß4 (ITGB4), a component of the focal adhesion complex. Silencing ITGB4 in tolerant cells improved sotorasib sensitivity, while overexpressing ITGB4 enhanced tolerance to sotorasib by supporting AKT-mTOR bypass signaling. Chronic treatment with sotorasib induced WNT expression and activated the WNT/ß-catenin signaling pathway. Thus, silencing both ITGB4 and ß-catenin significantly improved sotorasib sensitivity in tolerant, acquired, and inherently resistant cells. In addition, the proteasome inhibitor carfilzomib (CFZ) exhibited synergism with sotorasib by down-regulating ITGB4 and ß-catenin expression. Furthermore, adagrasib phenocopies the combination effect of sotorasib and CFZ by suppressing KRAS activity and inhibiting cell cycle progression in inherently resistant cells. Overall, our findings unveil previously unrecognized nongenetic mechanisms underlying resistance to sotorasib and propose a promising treatment strategy to overcome resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Humanos , Antivirales , beta Catenina/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Resistencia a Antineoplásicos/genética
13.
Biochem Pharmacol ; 217: 115847, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37804871

RESUMEN

Ovarian cancer (OC) is the most prevalent and deadly cancer of the female reproductive system. Women will continue to be impacted by OC-related morbidity and mortality. Despite the fact that chemotherapy with cisplatin is the main component as the first-line anticancer treatment for OC, chemoresistance and unfavorable side effects are important obstacles to effective treatment. Targets for effective cancer therapy are required for cancer cells but not for non-malignant cells because they are expressed differently in cancer cells compared to normal cells. Targets for cancer therapy should preferably be components that already exist in biochemical and signalling frameworks and that significantly contribute to the development of cancer or regulate the response to therapy. RLIP is an important mercapturic acid pathway transporter that is crucial for survival and therapy resistance in cancers, therefore, we examined the role of RLIP in regulating essential signalling proteins involved in relaying the inputs from upstream survival pathways and mechanisms contributing to chemo-radiotherapy resistance in OC. The findings of our research offer insight into a novel anticancer effect of RLIP depletion/inhibition on OC and might open up new therapeutic avenues for OC therapy.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Xenoinjertos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Transducción de Señal , Cisplatino/farmacología , Cisplatino/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos
14.
Cancers (Basel) ; 15(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37296923

RESUMEN

Animal models have been utilized for decades to investigate the causes of human diseases and provide platforms for testing novel therapies. Indeed, breakthrough advances in genetically engineered mouse (GEM) models and xenograft transplantation technologies have dramatically benefited in elucidating the mechanisms underlying the pathogenesis of multiple diseases, including cancer. The currently available GEM models have been employed to assess specific genetic changes that underlay many features of carcinogenesis, including variations in tumor cell proliferation, apoptosis, invasion, metastasis, angiogenesis, and drug resistance. In addition, mice models render it easier to locate tumor biomarkers for the recognition, prognosis, and surveillance of cancer progression and recurrence. Furthermore, the patient-derived xenograft (PDX) model, which involves the direct surgical transfer of fresh human tumor samples to immunodeficient mice, has contributed significantly to advancing the field of drug discovery and therapeutics. Here, we provide a synopsis of mouse and zebrafish models used in cancer research as well as an interdisciplinary 'Team Medicine' approach that has not only accelerated our understanding of varied aspects of carcinogenesis but has also been instrumental in developing novel therapeutic strategies.

15.
Biochim Biophys Acta Rev Cancer ; 1878(4): 188929, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286146

RESUMEN

Gynecologic cancers can make up the bulk of cancers in both humans and animals. The stage of diagnosis and the type of tumor, its origin, and its spread are a few of the factors that influence how effectively a treatment modality works. Currently, radiotherapy, chemotherapy, and surgery are the major treatment options recommended for the eradication of malignancies. The use of several anti-carcinogenic drugs increases the chance of harmful side effects, and patients might not react to the treatments as expected. The significance of the relationship between inflammation and cancer has been underscored by recent research. As a result, it has been shown that a variety of phytochemicals with beneficial bioactive effects on inflammatory pathways have the potential to act as anti-carcinogenic medications for the treatment of gynecologic cancer. The current paper reviews the significance of inflammatory pathways in gynecologic malignancies and discusses the role of plants-derived secondary metabolites that are useful in the treatment of cancer.


Asunto(s)
Neoplasias de los Genitales Femeninos , Animales , Humanos , Femenino , Neoplasias de los Genitales Femeninos/tratamiento farmacológico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Inflamación/tratamiento farmacológico
16.
Cancer Lett ; 557: 216079, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36736532

RESUMEN

Cancer is a pervasive, constantly evolving, and significant public health concern. The number of new cancer cases has risen dramatically in the last decades, making it one of the top causes of poor health and mortality worldwide. Although various treatment strategies, including surgery, radiation, and pharmaceutical therapies, have evolved into more sophisticated, precise methods, there is not much improvement in the cancer-related death toll. Consequently, natural product-based therapeutic discoveries have recently been considered an alternative approach. According to an estimate, one-third of the top twenty medications in today's market have a natural plant-product-based origin. Accordingly, primary prevention is an essential component of worldwide cancer control. This review provides an overview of the mechanisms of action of bioactive ingredients in natural dietary products that may contribute to the prevention and management of multiple malignancies.


Asunto(s)
Productos Biológicos , Neoplasias , Humanos , Pronóstico , Productos Biológicos/uso terapéutico , Neoplasias/tratamiento farmacológico
17.
J Clin Med ; 12(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36675528

RESUMEN

Translational research in medicine, defined as the transfer of knowledge and discovery from the basic sciences to the clinic, is typically achieved through interactions between members across scientific disciplines to overcome the traditional silos within the community. Thus, translational medicine underscores 'Team Medicine', the partnership between basic science researchers and clinicians focused on addressing a specific goal in medicine. Here, we highlight this concept from a City of Hope perspective. Using cisplatin resistance in non-small cell lung cancer (NSCLC) as a paradigm, we describe how basic research scientists, clinical research scientists, and medical oncologists, in true 'Team Science' spirit, addressed cisplatin resistance in NSCLC and identified a previously approved compound that is able to alleviate cisplatin resistance in NSCLC. Furthermore, we discuss how a 'Team Medicine' approach can help to elucidate the mechanisms of innate and acquired resistance in NSCLC and develop alternative strategies to overcome drug resistance.

18.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188803, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36150564

RESUMEN

Previously, we showed that knockout mice homozygous for deficiency of the mercapturic acid pathway (MAP) transporter protein, RLIP (RLIP-/-), are resistant to chemical carcinogenesis, inflammation, and metabolic syndrome (MetS). We also found that RLIP-/- mice are highly resistant to obesity caused by a high-fat diet (HFD). Interestingly, these studies showed that kinase, cytokine, and adipokine signaling that are characteristics of obesity were blocked despite the presence of increased oxidative stress in RLIP-/- mice. The deficiencies in obesity-inducing kinase, cytokine, and adipokine signaling were attributable to a lack of clathrin-dependent endocytosis (CDE), a process that is severely deficient in RLIP-/- mice. Because CDE is also necessary for carcinogenic signaling through EGF, WNT, TGFß and other cancer-specific peptide hormones, and because RLIP-/- mice are cancer-resistant, we reasoned that depletion of RLIP by an antisense approach should cause cancer regression in human cancer xenografts. This prediction has been confirmed in studies of xenografts from lung, kidney, prostate, breast, and pancreatic cancers and melanoma. Because these results suggested an essential role for RLIP in carcinogenesis, and because our studies have also revealed a direct interaction between p53 and RLIP, we reasoned that if RLIP played a central role in carcinogenesis, that development of lymphoma in p53-/- mice, which normally occurs by the time these mice are 6 months old, could be delayed or prevented by depleting RLIP. Recent studies described herein have confirmed this hypothesis, showing complete suppression of lymphomagenesis in p53-/- mice treated with anti-RLIP antisense until the age of 8 months. All control mice developed lymphoma in the thymus or testis as expected. These findings lead to a novel paradigm predicting that under conditions of increased oxidative stress, the consequent increased flux of metabolites in the MAP causes a proportional increase in the rate of CDE. Because CDE inhibits insulin and TNF signaling but promotes EGF, TGFß, and Wnt signaling, our model predicts that chronic stress-induced increases in RLIP (and consequently CDE) will induce insulin-resistance and enhance predisposition to cancer. Alternatively, generalized depletion of RLIP would antagonize the growth of malignant cells, and concomitantly exert therapeutic insulin-sensitizing effects. Therefore, this review focuses on how targeted depletion or inhibition of RLIP could provide a novel target for treating both obesity and cancer.


Asunto(s)
Insulinas , Neoplasias , Hormonas Peptídicas , Acetilcisteína/metabolismo , Adipoquinas/metabolismo , Animales , Carcinogénesis/genética , Carcinógenos , Proteínas Portadoras/metabolismo , Clatrina/metabolismo , Citocinas/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Lactante , Insulinas/metabolismo , Masculino , Ratones , Obesidad/genética , Estrés Oxidativo , Hormonas Peptídicas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...