Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 13(5): 147, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37124988

RESUMEN

Carbon in many different forms especially, Graphene, Carbon nanotubes (CNTs), and Fullerene is emerging as an important material in the areas of the biomedical field for various applications. This review comprehensively describes the nano antibiotic effect of carbon-based nanocomposites: epicenter on graphene, carbon nanotubes, and fullerene Composites. It summarises the studies conducted to evaluate their antimicrobial applications as they can disrupt the cell membrane of bacteria resulting in cell death. The initial section gives a glimpse of both "Gram"-positive and negative bacteria, which have been affected by Graphene, CNTs, and Fullerene-based nanocomposites. These bacteria include Staphylococcus Aureus, Bacillus Thuringiensis, Enterococcus faecalis, Enterococcus faecium, Bacillus subtilis, Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeroginosa, Pseudomonas syringae , Shigella flexneri,Candida Albicans, Mucor. Another section is dedicated to the insight of Graphene, and its types such as Graphene Oxide (GO), Reduced graphene oxide (rGO), Graphene Nanoplatelets (GNPs), Graphene Nanoribbons (GNRs), and Graphene Quantum Dots (GQDs). Insight into CNT, including both the types SWCNT and MWCNT, studied, followed by understanding fullerene is also reported. Another section is dedicated to the antibacterial mechanism of Graphene, CNT, and Fullerene-based nanocomposites. Further, an additional section is dedicated to a comprehensive review of the antibacterial characteristics of Graphene, CNT, and nanocomposites based on fullerene. Future perspectives and recommendations have also been highlighted in the last section.

2.
Top Curr Chem (Cham) ; 381(2): 11, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36907974

RESUMEN

MXene, a new member of 2D material, unites the eminence of hydrophilicity, large surface groups, superb flexibility and excellent conductivity. Because of its prodigious characteristics, MXene has gained much approbation among researchers worldwide. MXene's noteworthy features, such as its electrical conductivity, structural property, magnetic behaviour, etc., manifest a broad spectrum of applications, including environment, catalytic, wireless communications, electromagnetic interference (EMI) shielding, drug delivery, wound dressing, bio-imaging, antimicrobial and biosensor. In this review article, an overview of the latest advancements in the applications of MXene has been reported. First, various synthesis strategies of MXene will be summarized, followed by the different structural, physical and chemical properties. The current advances in versatile applications have been discussed. The article aims to incorporate all the possible applications of MXene, making it a versatile material that juxtaposes it with other 2D materials. A separate section is dedicated to the bottlenecks for future developments and recommendations.


Asunto(s)
Sistemas de Liberación de Medicamentos , Catálisis , Conductividad Eléctrica
3.
Biomass Convers Biorefin ; : 1-27, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36817514

RESUMEN

Bamboo, the fastest-growing plant, has several unique characteristics that make it appropriate for diverse applications. It is low-cost, high-tensile, lightweight, flexible, durable, and capable of proliferating even in ineffectual areas (e.g., incline). This review discusses the unique properties of bamboo for making charcoal and biochar for diverse applications. To produce bamboo charcoal and biochar, this study reports on the pyrolysis process for the thermal degradation of organic materials in an oxygen-depleted atmosphere under a specific temperature. This is an alternative method for turning waste biomass into products with additional value, such as biochar. Due to various advantages, bamboo charcoal is preferred over regular charcoal as it has four times the absorption rate and ten times more surface area reported. According to the reports, the charcoal yield ranges from 24.60 to 74.27%. Bamboo chopsticks were the most useful source for producing charcoal, with a high yield of 74.27% at 300 °C in nitrogen, but the thorny bamboo species have a tremendous amount of minimal charcoal, i.e., 24.60%. The reported biochar from bamboo yield ranges from 32 to 80%. The most extensive biochar production is produced by the bamboo D. giganteus, which yields 80% biochar at 300 °C. Dry bamboo stalks at 400 °C produced 32% biochar. One of the sections highlights biochar as a sustainable solution for plastic trash management produced during the COVID-19 pandemic. Another section is dedicated to the knowledge enhancement about the broad application spectrum of the charcoal and biochar. The last section highlights the conclusions, future perspectives, and recommendations on the charcoal and biochar derived from bamboo.

4.
J Inorg Organomet Polym Mater ; 32(9): 3355-3367, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35599970

RESUMEN

Design of antimicrobial tiles seems necessary to combat against contagious diseases, especially COVID-19. In addition to personal hygiene, this technology facilitates public hygiene as antimicrobial tiles can be installed at hospitals, schools, banks, offices, lobbies, railway stations, etc. This review is primarily focused on preparing antimicrobial tiles using an antimicrobial layer or coatings that fight against germs. The salient features and working mechanisms of antimicrobial tiles are highlighted. This challenge is a component of the exploratory nature of nanoarchitectonics, that also extends farther than the realm of nanotechnology. This nanoarchitectonics has been successful at the laboratory scale as antimicrobial metal nanoparticles are mainly used as additives in preparing tiles. A detailed description of various materials for developing unique antimicrobial tiles is reported here. Pure metal (Ag, Zn) nanoparticles and a mixture of nanoparticles with other inorganic materials (SiO2,, TiO2, anatase, nepheline) have been predominantly used to combat microbes. The developed antimicrobial tiles have shown excellent activity against a wide range of Gram-positive and Gram-negative bacteria. The last section discussed a hypothetical overview of utilizing the antimicrobial tiles against SARS-CoV-2. Overall, this review gives descriptive knowledge about the importance of antimicrobial tiles to create a clean and sustainable environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...