Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Glob Health Epidemiol Genom ; 2024: 8872463, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716477

RESUMEN

This study utilized integrative bioinformatics' tools together with phenotypic assays to understand the whole-genome features of a carbapenem-resistant international clone II Acinetobacter baumannii AB073. Overall, we found the isolate to be resistant to seven antibiotic classes, penicillins, ß-lactam/ß-lactamase inhibitor combinations, cephalosporins, carbapenems, aminoglycosides, fluoroquinolones, and folate pathway antagonists. These resistance phenotypes are related to various chromosomal-located antibiotic resistance determinants involved in different mechanisms such as reduced permeability, antibiotic target protection, antibiotic target alteration, antibiotic inactivation, and antibiotic efflux. IC2 A. baumannii AB073 could not transfer antibiotic resistance by conjugation experiments. Likewise, mobilome analysis found that AB073 did not carry genetic determinants involving horizontal gene transfer. Moreover, this isolate also carried multiple genes associated with the ability of iron uptake, biofilm formation, immune invasion, virulence regulations, and serum resistance. In addition, the genomic epidemiological study showed that AB073-like strains were successful pathogens widespread in various geographic locations and clinical sources. In conclusion, the comprehensive analysis demonstrated that AB073 contained multiple genomic determinants which were important characteristics to classify this isolate as a successful international clone II obtained from Thailand.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Acinetobacter baumannii/genética , Acinetobacter baumannii/efectos de los fármacos , Tailandia/epidemiología , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/epidemiología , Infecciones por Acinetobacter/tratamiento farmacológico , Humanos , Genoma Bacteriano/genética , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genética , Carbapenémicos/farmacología , Virulencia/genética
2.
J Gen Appl Microbiol ; 65(6): 277-283, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-31217414

RESUMEN

This study examines the ability of the quorum-sensing molecules (QSMs) farnesol and tryptophol to induce programmed cell death of the pathogenic fungus Candida albicans, to alter the expression of apoptosis-related genes, and to reduce the pathogenicity and virulence of C. albicans in Galleria mellonella. Our results showed that both farnesol and tryptophol inhibited C. albicans germ tube formation. In the QSM-treated group, the expression levels of the apoptosis genes increased, whereas the expression level of the anti-apoptosis gene decreased. Further, pretreatment of C. albicans with tryptophol or farnesol prior to G. mellonella larval infection significantly enhanced host survival compared with larvae infected with untreated C. albicans. Thus, farnesol and tryptophol may trigger apoptosis of C. albicans in vitro and reduce the virulence of C. albicans in vivo. Although further study is needed to identify the precise mechanisms underlying the antifungal properties of farnesol and tryptophol, these results suggest that QSMs may be effective agents for controlling fungal infection.


Asunto(s)
Apoptosis/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Farnesol/farmacología , Indoles/farmacología , Animales , Larva/microbiología , Mariposas Nocturnas/microbiología , Percepción de Quorum , Virulencia
3.
Acta Microbiol Immunol Hung ; 66(1): 31-55, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30816806

RESUMEN

Murine models are suggested as the gold standard for scientific research, but they have many limitations of ethical and logistical concern. Then, the alternative host models have been developed to use in many aspects especially in invertebrate animals. These models are selected for many areas of research including genetics, physiology, biochemistry, evolution, disease, neurobiology, and behavior. During the past decade, Galleria mellonella has been used for several medical and scientific researches focusing on human pathogens. This model commonly used their larvae stage due to their easy to use, non-essential special tools or special technique, inexpensive, short life span, and no specific ethical requirement. Moreover, their innate immune response close similarly to mammals, which correlate with murine immunity. In this review, not only the current knowledge of characteristics and immune response of G. mellonella, and the practical use of these larvae in medical mycology research have been presented, but also the better understanding of their limitations has been provided.


Asunto(s)
Investigación Biomédica/métodos , Modelos Animales de Enfermedad , Lepidópteros/inmunología , Lepidópteros/microbiología , Micosis/microbiología , Micosis/patología , Animales , Humanos , Larva/inmunología , Larva/microbiología
4.
PLoS One ; 14(1): e0210942, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30673761

RESUMEN

Scedosporium is a genus comprising at least 10 species of airborne fungi (saprobes) that survive and grow on decaying organic matter. These fungi are found in high density in human-affected areas such as sewage-contaminated water, and five species, namely Scedosporium apiospermum, S. boydii, S. aurantiacum, S. dehoogii, and S. minutisporum, cause human infections. Thailand is a popular travel destination in the world, with many attractions present in densely populated areas; thus, large numbers of people may be exposed to pathogens present in these areas. We conducted a comprehensive survey of Scedosporium species in 350 soil samples obtained from 35 sites of high human population density and tourist popularity distributed over 23 provinces and six geographic regions of Thailand. Soil suspensions of each sample were inoculated on three plates of Scedo-Select III medium to isolate Scedosporium species. In total, 191 Scedosporium colonies were isolated from four provinces. The species were then identified using PCR and sequencing of the beta-tubulin (BT2) gene. Of the 191 isolates, 188 were S. apiospermum, one was S. dehoogii, and species of two could not be exactly identified. Genetic diversity analysis revealed high haplotype diversity of S. apiospermum. Soil is a major ecological niche for Scedosporium and may contain S. apiospermum populations with high genetic diversity. This study of Scedosporium distribution might encourage health care providers to consider Scedosporium infection in their patients.


Asunto(s)
Scedosporium/clasificación , Microbiología del Suelo , Secuencia de Bases , ADN de Hongos/genética , Ecosistema , Proteínas Fúngicas/genética , Frecuencia de los Genes , Genes Fúngicos , Variación Genética , Haplotipos , Humanos , Micosis/etiología , Filogenia , Densidad de Población , Scedosporium/genética , Scedosporium/patogenicidad , Tailandia , Enfermedad Relacionada con los Viajes , Tubulina (Proteína)/genética
5.
Interdiscip Perspect Infect Dis ; 2018: 3748594, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30631350

RESUMEN

Scedosporium apiospermum and Lomentospora prolificans are important fungal species isolated from immunocompromised patients. Previous studies have demonstrated that these filamentous fungi exist as saprophytes in the soil and showed the highest minimum inhibitory concentration to several drugs. We aimed to examine how UVC affects the S. apiospermum and L. prolificans by investigating the role of UVC on growth, induction of apoptosis by ethidium bromide (EB)/acridine orange (AO) staining, and transcriptomic study of caspase recruitment domain family, member 9 (CARD-9) gene. Our studies showed that 15 minutes of exposure to UVC light effectively increased reduction in both organisms and caused changes in colony morphology, color, and hyphal growth pattern. After 15 min of UVC irradiation, apoptotic cells were quantitated by EB/AO staining, and the percentage of apoptosis was 96.06% in S. apiospermum and 28.30% in L. prolificans. CARD-9 gene expression results confirmed that apoptosis was induced in S. apiospermum and L. prolificans after UVC treatment and that S. apiospermum showed a higher expression of apoptosis signaling than L. prolificans. Our study explored the effects of UVC in the inactivation of S. apiospermum and L. prolificans. We hope that our data is useful to other researchers in future studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...