Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vaccine ; 41(31): 4439-4446, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37331838

RESUMEN

This report summarizes the highlights of a workshop convened by the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), on April 4-5, 2022, to provide a discussion forum for sharing insights on the current status, key challenges, and next steps to advance the current landscape of promising adjuvants in preclinical and clinical human immunodeficiency virus (HIV) vaccine studies. A key goal was to solicit and share recommendations on scientific, regulatory, and operational guidelines for bridging the gaps in rational selection, access, and formulation of clinically relevant adjuvants for HIV vaccine candidates. The NIAID Vaccine Adjuvant Program working group remains committed to accentuate promising adjuvants and nurturing collaborations between adjuvant and HIV vaccine developers.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , Estados Unidos , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Infecciones por VIH/prevención & control , Adyuvantes Inmunológicos , National Institutes of Health (U.S.)
2.
Front Immunol ; 14: 1105655, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36742311

RESUMEN

Vaccine adjuvant research is being fueled and driven by progress in the field of innate immunity that has significantly advanced in the past two decades with the discovery of countless innate immune receptors and innate immune pathways. Receptors for pathogen-associated molecules (PAMPs) or host-derived, danger-associated molecules (DAMPs), as well as molecules in the signaling pathways used by such receptors, are a rich source of potential targets for agonists that enable the tuning of innate immune responses in an unprecedented manner. Targeted modulation of immune responses is achieved not only through the choice of immunostimulator - or select combinations of adjuvants - but also through formulation and systematic modifications of the chemical structure of immunostimulatory molecules. The use of medium and high-throughput screening methods for finding immunostimulators has further accelerated the identification of promising novel adjuvants. However, despite the progress that has been made in finding new adjuvants through systematic screening campaigns, the process is far from perfect. A major bottleneck that significantly slows the process of turning confirmed or putative innate immune receptor agonists into vaccine adjuvants continues to be the lack of defined in vitro correlates of in vivo adjuvanticity. This brief review discusses recent developments, exciting trends, and notable successes in the adjuvant research field, albeit acknowledging challenges and areas for improvement.


Asunto(s)
Adyuvantes Inmunológicos , Inmunidad Innata , Adyuvantes Inmunológicos/química , Adyuvantes Farmacéuticos , Receptores Inmunológicos , Transducción de Señal
3.
Elife ; 82019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31663508

RESUMEN

Supramolecular signaling assemblies are of interest for their unique signaling properties. A µm scale signaling assembly, the central supramolecular signaling cluster (cSMAC), forms at the center of the interface of T cells activated by antigen-presenting cells. We have determined that it is composed of multiple complexes of a supramolecular volume of up to 0.5 µm3 and associated with extensive membrane undulations. To determine cSMAC function, we have systematically manipulated the localization of three adaptor proteins, LAT, SLP-76, and Grb2. cSMAC localization varied between the adaptors and was diminished upon blockade of the costimulatory receptor CD28 and deficiency of the signal amplifying kinase Itk. Reconstitution of cSMAC localization restored IL-2 secretion which is a key T cell effector function as dependent on reconstitution dynamics. Our data suggest that the cSMAC enhances early signaling by facilitating signaling interactions and attenuates signaling thereafter through sequestration of a more limited set of signaling intermediates.


Cells receive dozens of signals at different times and in different places. Integrating incoming information and deciding how to respond is no easy task. Signaling molecules on the cell surface pass messages inwards using chemical messengers that interact in complicated networks within the cell. One way to unravel the complexity of these networks is to look at specific groups of signaling molecules in test tubes to see how they interact. But the interior of a living cell is a very different environment. Molecules inside cells are tightly packed and, under certain conditions, they interact with each other by the thousands. They form structures known as 'supramolecular complexes', which changes their behavior. One such supramolecular complex is the 'central supramolecular activation cluster', or cSMAC for short. It forms under the surface of immune cells called T cells when they are getting ready to fight an infection. Under the microscope, the cSMAC looks like the bullseye of a dartboard, forming a crowd of signaling molecules at the center of the interface between the T cell and another cell. Its exact role is not clear, but evidence suggests it helps to start and stop the signals that switch T cells on. The cSMAC contains two key protein adaptors called LAT and SLP-76 that help to hold the structure together. So, to find out what the cSMAC does, Clark et al. genetically modified these adaptors to gain control over when the cSMAC forms. Clark et al. examined mouse T cells using super-resolution microscopy and electron microscopy, watching as other immune cells delivered the signal to switch on. As the T cells started to activate, the composition of the cSMAC changed. In the first two minutes after the cells started activating, the cSMAC included a large number of different components. This made T cell activation more efficient, possibly because the supramolecular complex was helping the network of signals to interact. Later, the cSMAC started to lose many of these components. Separating components may have helped to stop the activation signals. Understanding how T cells activate could lead to the possibility of turning them on or off in immune-related diseases. But these findings are not just relevant to immune cells. Other cells also use supramolecular complexes to control their signaling. Investigating how these complexes change over time could help us to understand how other cell types make decisions.


Asunto(s)
Células Presentadoras de Antígenos/fisiología , Comunicación Celular , Interleucina-2/metabolismo , Linfocitos T/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antígenos CD28/metabolismo , Células Cultivadas , Proteína Adaptadora GRB2/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo
4.
Mol Cell ; 75(6): 1229-1242.e5, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31377117

RESUMEN

Interferon gamma (IFN-γ), critical for host defense and tumor surveillance, requires tight control of its expression. Multiple cis-regulatory elements exist around Ifng along with a non-coding transcript, Ifng-as1 (also termed NeST). Here, we describe two genetic models generated to dissect the molecular functions of this locus and its RNA product. DNA deletion within the Ifng-as1 locus disrupted chromatin organization of the extended Ifng locus, impaired Ifng response, and compromised host defense. Insertion of a polyA signal ablated the Ifng-as1 full-length transcript and impaired host defense, while allowing proper chromatin structure. Transient knockdown of Ifng-as1 also reduced IFN-γ production. In humans, discordant expression of IFNG and IFNG-AS1 was evident in memory T cells, with high expression of this long non-coding RNA (lncRNA) and low expression of the cytokine. These results establish Ifng-as1 as an important regulator of Ifng expression, as a DNA element and transcribed RNA, involved in dynamic and cell state-specific responses to infection.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Memoria Inmunológica , Infecciones/inmunología , Interferón gamma/inmunología , ARN no Traducido/inmunología , Linfocitos T/inmunología , Animales , Cromatina/genética , Cromatina/inmunología , Femenino , Técnicas de Silenciamiento del Gen , Infecciones/genética , Infecciones/patología , Interferón gamma/genética , Ratones , ARN no Traducido/genética , Linfocitos T/patología
5.
J Exp Med ; 209(13): 2331-8, 2012 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-23209316

RESUMEN

Interleukin (IL)-22-producing innate lymphoid cells (ILCs; ILC22) comprise a heterogeneous population of cells that are dependent on the transcription factor retinoid-related orphan γt (RORγt) and are critical for barrier function of the intestinal mucosa. A distinct ILC22 subset expresses the natural cytotoxicity receptor NKp46 (NKp46+ ILC22); however, the factors that contribute to the generation of this population versus other subsets are largely unknown. Herein, we show that T-bet (encoded by Tbx21) was highly expressed in NKp46+ ILC22, a feature shared by all NKp46+ cells present in the intestine but not by other IL-22-producing populations. Accordingly, the absence of T-bet resulted in loss of NKp46+ ILC22 in the intestinal lamina propria. The residual NKp46+ ILC22 present in Tbx21(-/-) mice showed a marked reduction of Rorγt expression and impairment in IL-22 production. Generation and functions of gut NK1.1+ cells were also altered. Bone marrow chimera experiments revealed a cell-intrinsic requirement for T-bet in these subsets and competitive reconstitution experiments revealed roles for T-bet in multiple ILC subsets. Thus, T-bet has a general importance for ILC in the gut and plays a selective and critical role in the generation of NKp46+ ILC22.


Asunto(s)
Inmunidad Innata , Mucosa Intestinal/inmunología , Células Asesinas Naturales/inmunología , Proteínas de Dominio T Box/inmunología , Animales , Antígenos Ly/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Expresión Génica , Inmunidad Innata/genética , Subunidad alfa del Receptor de Interleucina-7/metabolismo , Interleucinas/biosíntesis , Mucosa Intestinal/citología , Células Asesinas Naturales/citología , Subgrupos Linfocitarios/citología , Subgrupos Linfocitarios/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Interleucina-22
6.
Annu Rev Immunol ; 30: 707-31, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22224760

RESUMEN

T helper cell differentiation occurs in the context of the extracellular cytokine milieu evoked by diverse microbes and other pathogenic stimuli along with T cell receptor stimulation. The culmination of these signals results in specification of T helper lineages, which occurs through the combinatorial action of multiple transcription factors that establish distinctive transcriptomes. In this manner, inducible, but constitutively active, master regulators work in conjunction with factors such as the signal transducer and activator of transcriptions (STATs) that sense the extracellular environment. The acquisition of a distinctive transcriptome also depends on chromatin modifications that impact key cis elements as well as the changes in global genomic organization. Thus, signal transduction and epigenetics are linked in these processes of differentiation. In this review, recent advances in understanding T helper lineage specification and deciphering the action of transcription factors are summarized with emphasis on comprehensive views of the dynamic T cell epigenome.


Asunto(s)
Epigénesis Genética , Regulación de la Expresión Génica , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Transcripción Genética , Animales , Enfermedades Autoinmunes/genética , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Linaje de la Célula/genética , Epigenómica , Humanos , ARN no Traducido/genética , ARN no Traducido/metabolismo , Elementos Reguladores de la Transcripción , Linfocitos T Colaboradores-Inductores/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Sci Signal ; 4(193): ra66, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21971040

RESUMEN

During T cell activation by antigen-presenting cells (APCs), the diverse spatiotemporal organization of components of T cell signaling pathways modulates the efficiency of activation. Here, we found that loss of the tyrosine kinase interleukin-2 (IL-2)-inducible T cell kinase (Itk) in mice altered the spatiotemporal distributions of 14 of 16 sensors of T cell signaling molecules in the region of the interface between the T cell and the APC, which reduced the segregation of signaling intermediates into distinct spatiotemporal patterns. Activation of the Rho family guanosine triphosphatase Cdc42 at the center of the cell-cell interface was impaired, although the total cellular amount of active Cdc42 remained intact. The defect in Cdc42 localization resulted in impaired actin accumulation at the T cell-APC interface in Itk-deficient T cells. Reconstitution of cells with active Cdc42 that was specifically directed to the center of the interface restored actin accumulation in Itk-deficient T cells. Itk also controlled the central localization of the guanine nucleotide exchange factor SLAT [Switch-associated protein 70 (SWAP-70)-like adaptor of T cells], which may contribute to the activation of Cdc42 at the center of the interface. Together, these data illustrate how control of the spatiotemporal organization of T cell signaling controls critical aspects of T cell function.


Asunto(s)
Activación de Linfocitos/inmunología , Proteínas Tirosina Quinasas/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología , Actinas/genética , Actinas/inmunología , Actinas/metabolismo , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Activación Enzimática/genética , Activación Enzimática/inmunología , Factores de Intercambio de Guanina Nucleótido , Activación de Linfocitos/genética , Ratones , Ratones Transgénicos , Proteínas Nucleares/genética , Proteínas Nucleares/inmunología , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/genética , Linfocitos T/citología , Linfocitos T/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/inmunología , Proteína de Unión al GTP cdc42/metabolismo
8.
Sci Signal ; 2(65): ra15, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19351954

RESUMEN

Temporal and spatial variations in the concentrations of signaling intermediates in a living cell are important for signaling in complex networks because they modulate the probabilities that signaling intermediates will interact with each other. We have studied 30 signaling sensors, ranging from receptors to transcription factors, in the physiological activation of murine ex vivo T cells by antigen-presenting cells. Spatiotemporal patterning of these molecules was highly diverse and varied with specific T cell receptors and T cell activation conditions. The diversity and variability observed suggest that spatiotemporal patterning controls signaling interactions during T cell activation in a physiologically important and discriminating manner. In support of this, the effective clustering of a group of ligand-engaged receptors and signaling intermediates in a joint pattern consistently correlated with efficient T cell activation at the level of the whole cell.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal/inmunología , Linfocitos T/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Western Blotting , Péptidos y Proteínas de Señalización Intracelular/inmunología , Ratones , Ratones Transgénicos
9.
J Immunol ; 177(7): 4402-13, 2006 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16982875

RESUMEN

T cell activation is driven by the TCR and complemented by costimulation. We have studied the dynamics of ligand-engagement of the costimulatory receptor CD2 in T cell/APC couples. Thousands of ligand-engaged CD2 molecules were included in a large T cell invagination at the center of the cellular interface within 1 min of cell couple formation. The structure and regulation of this invagination shared numerous features with phagocytosis and macropinocytosis. Three observations further characterize the invagination and the inclusion of CD2: 1) numerous ligand-engaged receptors were enriched in and internalized through the T cell invagination, none as prominently as CD2; 2) dissolution of the T cell invagination and CD2 engagement were required for effective proximal T cell signaling; and 3) the T cell invagination was uniquely sensitive to the affinity of the TCR for peptide-MHC. Based on this characterization, we speculate that the T cell invagination, aided by CD2 enrichment, internalizes parts of the TCR signaling machinery to reset T cell signaling upon agonist-mediated, stable APC contact.


Asunto(s)
Células Presentadoras de Antígenos/ultraestructura , Antígenos CD2/metabolismo , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/inmunología , Linfocitos T/ultraestructura , Actinas/metabolismo , Animales , Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/inmunología , Antígenos CD/inmunología , Antígenos CD/metabolismo , Antígenos CD2/inmunología , Antígeno CD48 , Endocitosis/inmunología , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
10.
J Immunol Methods ; 267(2): 151-6, 2002 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12165436

RESUMEN

The interleukin-1 (IL-1) gene complex consists of the IL-1alpha, IL-1beta and IL-1 receptor antagonist genes. Single-nucleotide polymorphisms (SNP) in all three genes have been associated with human diseases. In this study, primers containing mismatches at 1-3 nucleotide positions were designed to incorporate a restriction site for endonuclease AlwNI or XcmI in the presence of allele-specific nucleotides at the polymorphic positions. Based on this technique, a simple and robust multiplex polymerase chain reaction/restriction fragment length polymorphism (multiplex PCR/RFLP) assay was developed to determine simultaneously three to four informative SNPs (IL-1beta/+3954, IL-1beta/-511 and IL-1Ra/9261 or IL-1alpha/-889, IL-1beta/-31, IL-1beta/5810 and IL-1Ra/11100 SNPs) in the IL-1 gene complex.


Asunto(s)
Interleucina-1/genética , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Nucleótido Simple , Alelos , Secuencia de Bases , Línea Celular , Cartilla de ADN/genética , Genotipo , Proteína Antagonista del Receptor de Interleucina 1 , Familia de Multigenes , Polimorfismo de Longitud del Fragmento de Restricción , Sialoglicoproteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...