Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pers Med ; 13(10)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37888066

RESUMEN

COVID-19 patients suffer from the detrimental effects of cytokine storm and not much success has been achieved to overcome this issue. We sought to test the ability of selenium to reduce the impact of two important cytokine storm players: IL-6 and TNF-α. The effects of four selenium compounds on the secretion of these cytokines from THP-1 macrophages were evaluated in vitro following an LPS challenge. Also, the potential impact of methylseleninic acid (MSeA) on Nrf2 and IκBα was determined after a short treatment of THP-1 macrophages. MSeA was found to be the most potent selenium form among the four selenium compounds tested that reduced the levels of IL-6 and TNF-α secreted by THP-1 macrophages. In addition, an increase in Nrf2 and decrease in pIκBα in human macrophages was observed following MSeA treatment. Our data indicate that COVID-19 patients might benefit from the addition of MSeA to the standard therapy due to its ability to suppress the key players in the cytokine storm.

2.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36835577

RESUMEN

Breast cancer is the second leading cause of death for women in the United States, and early detection could offer patients the opportunity to receive early intervention. The current methods of diagnosis rely on mammograms and have relatively high rates of false positivity, causing anxiety in patients. We sought to identify protein markers in saliva and serum for early detection of breast cancer. A rigorous analysis was performed for individual saliva and serum samples from women without breast disease, and women diagnosed with benign or malignant breast disease, using isobaric tags for relative and absolute quantitation (iTRAQ) technique, and employing a random effects model. A total of 591 and 371 proteins were identified in saliva and serum samples from the same individuals, respectively. The differentially expressed proteins were mainly involved in exocytosis, secretion, immune response, neutrophil-mediated immunity and cytokine-mediated signaling pathway. Using a network biology approach, significantly expressed proteins in both biological fluids were evaluated for protein-protein interaction networks and further analyzed for these being potential biomarkers in breast cancer diagnosis and prognosis. Our systems approach illustrates a feasible platform for investigating the responsive proteomic profile in benign and malignant breast disease using saliva and serum from the same women.


Asunto(s)
Neoplasias de la Mama , Saliva , Humanos , Femenino , Saliva/metabolismo , Proyectos Piloto , Neoplasias de la Mama/metabolismo , Proteómica/métodos , Biomarcadores/metabolismo
3.
Tob Induc Dis ; 20: 45, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35611070

RESUMEN

INTRODUCTION: Cigarette smoking poses many health risks and can cause chronic obstructive pulmonary disease (COPD), cardiovascular disease, cancer of the lung and other organs. Smokers can substantially reduce their risks of these diseases by quitting, but nicotine addiction makes this difficult. Alternatives, such as electronic cigarettes (e-cigarettes), may provide a similar dose of nicotine, but expose users to fewer toxic chemicals than traditional cigarettes and may still be harmful especially for dual users, therefore, we sought to develop bioassays that can assess the potential toxicity and inflammatory response induced by e-cigarette liquids (e-liquids) with and without flavors. METHODS: E-liquids with varying nicotine content and flavors were aerosolized through growth media and exposed to human bronchial epithelial cell line (BEAS-2B) and human monocyte-macrophage cell line (THP-1) in vitro. Cytotoxicity in response to e-cigarette aerosols was measured by MTT assay in BEAS-2B cells and inflammatory response was measured by TNF-α, IL-6, IL-8, and MCP-1 released from THP-1 cells. In addition, the oxidative stress marker, REDD1, and impact on phagocytosis, was assessed following exposure of BEAS-2B and THP-1 derived macrophages, respectively. Cigarette smoke extract was used as a positive control with known cytotoxicity and impairment of inflammatory response. RESULTS: E-cigarette aerosols induced moderate cellular toxicity in bronchial epithelial cells. Our data also show that low nicotine levels are less damaging to the bronchial epithelial cells, and flavors in e-liquids influence the combined inflammatory response markers, phagocytosis, and REDD1 when examined in vitro. CONCLUSIONS: Our in vitro bioassays can be utilized to effectively measure flavor and nicotine-induced effects of e-cigarettes on combined inflammatory response and cytotoxicity in human macrophages and human bronchial epithelial cells, respectively.

4.
Biomedicines ; 10(1)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35052828

RESUMEN

Survival rate for pancreatic cancer remains poor and newer treatments are urgently required. Selenium, an essential trace element, offers protection against several cancer types and has not been explored much against pancreatic cancer specifically in combination with known chemotherapeutic agents. The present study was designed to investigate selenium and Gemcitabine at varying doses alone and in combination in established pancreatic cancer cell lines growing in 2D as well as 3D platforms. Comparison of multi-dimensional synergy of combinations' (MuSyc) model and highest single agent (HSA) model provided quantitative insights into how much better the combination performed than either compound tested alone in a 2D versus 3D growth of pancreatic cancer cell lines. The outcomes of the study further showed promise in combining selenium and Gemcitabine when evaluated for apoptosis, proliferation, and ENT1 protein expression, specifically in BxPC-3 pancreatic cancer cells in vitro.

5.
Tob Induc Dis ; 19: 56, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239408

RESUMEN

INTRODUCTION: Smoking is the leading cause of preventable disease. Although smoking results in an acute effect of relaxation and positive mood through dopamine release, smoking is thought to increase stress symptoms such as heart rate and blood pressure from nicotine-induced effects on the HPA axis and increased cortisol. Despite the importance in understanding the mechanisms in smoking maintenance, little is known about the overall protein and physiological response to smoking. There may be multiple functions involved that if identified might help in improving methods for behavioral and pharmacological interventions. Therefore, our goal for this pilot study was to identify proteins in the saliva that change in response to an acute smoking event versus acute sham smoking event in smokers and non-smokers, respectively. METHODS: We employed the iTRAQ technique followed by Mass Spectrometry to identify differentially expressed proteins in saliva of smokers and non-smokers after smoking cigarettes and sham smoking, respectively. We also validated some of the salivary proteins by ELISA or western blotting. In addition, salivary cortisol and salivary amylase (sAA) activity were measured. RESULTS: In all, 484 salivary proteins were identified. Several proteins were elevated as well as decreased in smokers compared to non-smokers. Among these were proteins associated with stress response including fibrinogen alpha, cystatin A and sAA. Our investigation also highlights methodological considerations in study design, sampling and iTRAQ analysis. CONCLUSIONS: We suggest further investigation of other differentially expressed proteins in this study including ACBP, A2ML1, APOA4, BPIB1, BPIA2, CAH1, CAH6, CYTA, DSG1, EST1, GRP78, GSTO1, sAA, SAP, STAT, TCO1, and TGM3 that might assist in improving methods for behavioral and pharmacological interventions for smokers.

6.
OMICS ; 25(8): 495-512, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34297901

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is among the most dangerous cancers with high mortality and lack of robust diagnostics and personalized/precision therapeutics. To achieve a systems-level understanding of tumorigenesis, unraveling of variations in the protein interactome and determination of key proteins exhibiting significant alterations in their interaction patterns during tumorigenesis are crucial. To this end, we have described differential protein-protein interactions and differentially interacting proteins (DIPs) in ESCC by utilizing the human protein interactome and transcriptome. Furthermore, DIP-centered modules were analyzed according to their potential in elucidation of disease mechanisms and improvement of efficient diagnostic, prognostic, and treatment strategies. Seven modules were presented as potential diagnostic, and 16 modules were presented as potential prognostic biomarker candidates. Importantly, our findings also suggest that 30 out of the 53 repurposed drugs were noncancer drugs, which could be used in the treatment of ESCC. Interestingly, 25 of these, proposed as novel drug candidates here, have not been previously associated in a context of esophageal cancer. In this context, risperidone and clozapine were validated for their growth inhibitory potential in three ESCC lines. Our findings offer a high potential for the development of innovative diagnostic, prognostic, and therapeutic strategies for further experimental studies in line with predictive diagnostics, targeted prevention, and personalization of medical services in ESCC specifically, and personalized cancer care broadly.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/diagnóstico , Carcinoma de Células Escamosas de Esófago/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico , Transcriptoma
7.
Autoimmunity ; 52(2): 57-68, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-31006265

RESUMEN

Systemic lupus erythematosus (SLE) is a debilitating multi-factorial immunological disorder characterized by increased inflammation and development of anti-nuclear autoantibodies. Selenium (Se) is an essential trace element with beneficial anti-cancer and anti-inflammatory immunological functions. In our previous proteomics study, analysis of Se-responsive markers in the circulation of Se-supplemented healthy men showed a significant increase in complement proteins. Additionally, Se supplementation prolonged the life span of lupus prone NZB/NZW-F1 mice. To better understand the protective immunological role of Se in SLE pathogenesis, we have investigated the impact of Se on B cells and macrophages using in vitro Se supplementation assays and the B6.Sle1b mouse model of lupus with an oral Se or placebo supplementation regimen. Analysis of Se-treated B6.Sle1b mice showed reduced splenomegaly and splenic cellularity compared to untreated B6. Sle1b mice. A significant reduction in total B cells and notably germinal center (GC) B cell numbers was observed. However, other cell types including T cells, Tregs, DCs and pDCs were unaffected. Consistent with reduced GC B cells there was a significant reduction in autoantibodies to dsDNA and SmRNP of the IgG2b and IgG2c subclass upon Se supplementation. We found that increased Se availability leads to impaired differentiation and maturation of macrophages from mouse bone marrow derived progenitors in vitro. Additionally, Se treatment during in vitro activation of B cells with anti-CD40L and LPS inhibited optimal B cell activation. Overall our data indicate that Se supplementation inhibits activation, differentiation and maturation of B cells and macrophages. Its specific inhibitory effect on B cell activation and GC B cell differentiation could be explored as a potential therapeutic supplement for SLE patients.


Asunto(s)
Anticuerpos Antinucleares/inmunología , Linfocitos B , Inmunoglobulina G/inmunología , Lupus Eritematoso Sistémico , Macrófagos , Selenio/farmacología , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Modelos Animales de Enfermedad , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/patología , Macrófagos/inmunología , Macrófagos/patología , Ratones
8.
OMICS ; 20(4): 202-13, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27027327

RESUMEN

Low selenium levels have been linked to a higher incidence of cancer and other diseases, including Keshan, Chagas, and Kashin-Beck, and insulin resistance. Additionally, muscle and cardiovascular disorders, immune dysfunction, cancer, neurological disorders, and endocrine function have been associated with mutations in genes encoding for selenoproteins. Selenium biology is complex, and a systems biology approach to study global metabolomics, genomics, and/or proteomics may provide important clues to examining selenium-responsive markers in circulation. In the current investigation, we applied a global proteomics approach on plasma samples collected from a previously conducted, double-blinded placebo controlled clinical study, where men were supplemented with selenized-yeast (Se-Yeast; 300 µg/day, 3.8 µmol/day) or placebo-yeast for 48 weeks. Proteomic analysis was performed by iTRAQ on 8 plasma samples from each arm at baseline and 48 weeks. A total of 161 plasma proteins were identified in both arms. Twenty-two proteins were significantly altered following Se-Yeast supplementation and thirteen proteins were significantly changed after placebo-yeast supplementation in healthy men. The differentially expressed proteins were involved in complement and coagulation pathways, immune functions, lipid metabolism, and insulin resistance. Reconstruction and analysis of protein-protein interaction network around selected proteins revealed several hub proteins. One of the interactions suggested by our analysis, PHLD-APOA4, which is involved in insulin resistance, was subsequently validated by Western blot analysis. Our systems approach illustrates a viable platform for investigating responsive proteomic profile in 'before and after' condition following Se-Yeast supplementation. The nature of proteins identified suggests that selenium may play an important role in complement and coagulation pathways, and insulin resistance.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Selenio/administración & dosificación , Levaduras/metabolismo , Método Doble Ciego , Humanos , Masculino , Placebos , Estudios Prospectivos
9.
Prostate ; 74(16): 1663-73, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25250521

RESUMEN

BACKGROUND: Prostate cancer (PCa) is a major aging-related disease for which little progress has been made in developing preventive strategies. Over the past several years, methionine restriction (MR), the feeding of a diet low in methionine (Met), has been identified as an intervention which significantly extends lifespan and reduces the onset of chronic diseases, including cancer, in laboratory animals. We, therefore, hypothesized that MR may be an effective strategy for inhibiting PCa. METHODS: Control (0.86% Met) or MR (0.12% Met) diets were fed to 5-week old TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice, a well-characterized model for PCa. The mice were sacrificed at 16 weeks of age and prostate and other tissues were harvested for histological and biochemical analyses. RESULTS: As previously reported, MR was associated with a decrease in body weight which was not associated with lowered food intake. MR led to significant reductions in the development of Prostatic Intraepithelial Neoplasia (PIN) lesions, specifically in the anterior and dorsal lobes of the prostate where the incidence of high-grade PIN was reduced by ∼50% (P < 0.02). The reduction in PIN severity was associated with 46-64% reductions in cell proliferation rates (P < 0.02) and plasma IGF-1 levels (P < 0.0001), which might, in part, explain the effects on carcinogenesis. Additionally, no adverse consequences of MR on immune function were observed in the TRAMP mice. CONCLUSIONS: Overall, these findings indicate that MR is associated with a reduction in prostate cancer development in the TRAMP model and supports the continued development of MR as a potential PCa prevention strategy.


Asunto(s)
Adenocarcinoma in Situ/prevención & control , Modelos Animales de Enfermedad , Metionina/deficiencia , Neoplasias de la Próstata/prevención & control , Adenocarcinoma in Situ/genética , Adenocarcinoma in Situ/patología , Animales , Composición Corporal , Peso Corporal , Proliferación Celular , Dieta , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones Mutantes , Ratones Transgénicos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
10.
Cancer Med ; 3(2): 252-64, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24515947

RESUMEN

Methylseleninic acid (MSeA) is a monomethylated selenium metabolite theoretically derived from subsequent ß-lyase or transamination reactions of dietary Se-methylselenocysteine that has potent antitumor activity by inhibiting cell proliferation of several cancers. Our previous studies showed that MSeA promotes apoptosis in invasive prostate cancer cells in part by downregulating hypoxia-inducible factor HIF-1α. We have now extended these studies to evaluate the impact of MSeA on REDD1 (an mTOR inhibitor) in inducing cell death of invasive prostate cancer cells in hypoxia. In both PTEN+ and PTEN- prostate cancer cells we show that MSeA elevates REDD1 and phosphorylation of AKT along with p70S6K in hypoxia. Furthermore, REDD1 induction by MSeA is independent of AKT and the mTOR inhibition in prostate cancer cells causes partial resistance to MSeA-induced growth reduction in hypoxia. Our data suggest that MSeA induces REDD1 and inhibits prostate cancer cell growth in hypoxia despite activation of AKT and dysregulation of mTOR.


Asunto(s)
Compuestos de Organoselenio/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Activación Enzimática , Humanos , Masculino , Ratones , Ratones Desnudos , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Especies Reactivas de Oxígeno/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Int J Cancer ; 131(9): 2134-42, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22307455

RESUMEN

Preclinical studies and clinical analyses have implicated the mammalian target of rapamycin (mTOR) pathway in the progression of prostate cancer, suggesting mTOR as a potential target for new therapies. mTOR, a serine/threonine kinase, belongs to two distinct signaling complexes: mTORC1 and mTORC2. We previously showed that the synthetic organoselenium compound, p-XSC, effectively inhibits viability and critical signaling molecules (e.g., androgen receptor, Akt) in androgen responsive (AR) and androgen independent (AI) human prostate cancer cells. On the basis of its inhibition of Akt, we hypothesized that p-XSC modulates mTORC2, an upstream regulator of the kinase. We further hypothesized that combining p-XSC with rapamycin, an mTORC1 inhibitor, would be an effective combinatory strategy for the inhibition of prostate cancer. The effects of p-XSC and rapamycin, alone or in combination, on viability and mTOR signaling were examined in AR LNCaP prostate cancer cells and AI C4-2 and DU145 cells. Phosphorylation of downstream targets of mTORC1 and mTORC2 was analyzed by immunoblotting. The interaction of mTORC1- and mTORC2-specific proteins with mTOR was probed through immunoprecipitation and immunoblotting. p-XSC inhibited phosphorylation of mTORC2 downstream targets, Akt and PCKα, and decreased the levels of rictor, an mTORC2-specific protein, coimmunoprecipitated with mTOR in C4-2 cells. The combination of p-XSC and rapamycin more effectively inhibited viability and mTOR signaling in C4-2, LNCaP and DU145 cells than either agent individually.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Compuestos de Organoselenio/farmacología , Neoplasias de la Próstata/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Portadoras/análisis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Masculino , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina
12.
Int J Cancer ; 130(6): 1430-9, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21500193

RESUMEN

Alternative strategies are needed to control growth of advanced and hormone refractory prostate cancer. In this regard, we investigated the efficacy of methylseleninic acid (MSeA), a penultimate precursor to the highly reactive selenium metabolite, methylselenol, to inhibit growth of invasive and hormone refractory rat (PAIII) and human (PC-3 and PC-3M) prostate cancer cells. Our results demonstrate that MSeA inhibits PAIII cell growth in vitro as well as reduces weights of tumors generated by PAIII cells treated ex vivo. A significant reduction in the number of metastatic lung foci by MSeA treatment was also noted in Lobund-Wistar rats. The PAIII cells along with PC-3, DU145 and PC-3M cells undergo apoptosis after MSeA treatments in both normoxia and hypoxia. Treatment of metastatic rat and human prostate cancer cell lines with MSeA decreased hypoxia-inducible factor-1α (HIF-1α) levels in a dose-dependent manner. Additionally, HIF-1α transcription activity both in normoxic and hypoxic conditions is reduced after MSeA treatment of prostate cancer cells. Furthermore, VEGF and GLUT1, downstream targets of HIF-1α, were also reduced in prostate cancer cells after MSeA treatment. Our study illustrates the efficacy of MSeA in controlling growth of hormone refractory prostate cancer by downregulating HIF-1α, which is possibly occurring through stabilization or increase in prolyl hydroxylase activity.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Compuestos de Organoselenio/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Hipoxia/genética , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Masculino , Metástasis de la Neoplasia , Procolágeno-Prolina Dioxigenasa/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Ratas , Ratas Wistar , Selenio/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Cancer Epidemiol Biomarkers Prev ; 19(9): 2332-40, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20643827

RESUMEN

BACKGROUND: Studies have shown that supplementation of adult men with selenium-enriched yeast (SY) was protective against prostate cancer (PCa) and also reduced oxidative stress and levels of prostate-specific antigen. Here, we determined the effect of SY supplementation on global serum protein expression in healthy men to provide new insights into the mechanism of selenium chemoprevention; such proteins may also serve as biomarkers of disease progression. METHODS: Serum samples from 36 adult men were obtained from our previous SY clinical trial, 9 months after supplementation with either SY (247 microg/d; n = 17) or placebo (nonenriched yeast; n = 19). RESULTS: Proteomic profiling using two-dimensional difference in gel electrophoresis followed by liquid chromatography-tandem mass spectrometry revealed a total of 1,496 candidate proteins, of which, 11 were differentially expressed in the SY group as compared with placebo. Eight proteins were upregulated [clusterin isoform 1 (CLU), transthyretin, alpha-1B-glycoprotein, transferrin, complement component 4B proprotein, isocitrate dehydrogenase, haptoglobin, and keratin 1] and three proteins were downregulated [alpha-1 antitrypsin (AAT), angiotensin precursor, and albumin precursor] by SY. All of the identified proteins were redox-sensitive or involved in the regulation of redox status. Because both AAT and CLU have been previously linked to PCa development, their identities were confirmed by two-dimensional Western blot analysis. CONCLUSIONS: We identified AAT and CLU as potential candidate proteins involved in the mechanism of PCa prevention by SY. Collectively, proteins identified in this study might serve as potential new biomarkers for monitoring and comparing responses to selenium-based chemopreventive agents. IMPACT: Proteomic analysis of serum might be useful for the early detection and monitoring efficacy of chemopreventive agents.


Asunto(s)
Proteínas Sanguíneas/biosíntesis , Selenio/administración & dosificación , Selenio/sangre , Levadura Seca/administración & dosificación , Adulto , Negro o Afroamericano , Biomarcadores/sangre , Biomarcadores/orina , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/genética , Humanos , Masculino , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/prevención & control , Proteómica/métodos , Resultado del Tratamiento , Población Blanca
14.
Int J Cancer ; 127(1): 230-8, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19918950

RESUMEN

Hormone refractory prostate cancer poses a huge problem and standard of care chemotherapy has not been very successful. We used a novel strategy to combine properties of 2 well-studied class of compounds (selenium and COX-2 inhibitor) and examined the resulting effectiveness against prostate cancer. Bearing in mind that sulfonamide moiety and pyrazole ring is important for the proapoptotic activity of Celecoxib, we synthesized a selenium derivative, Selenocoxib-1, by modifying Celecoxib at position 3 of the pyrazole ring. The PAIII cells derived from a metastatic prostate tumor that arose spontaneously in a Lobund-Wistar (LW) rat were used to examine the efficacy of Selenocoxib-1 in vitro. In addition, human metastatic prostate cancer cells, PC-3M, were tested for antitumor effect of Selenocoxib-1 in vitro. The IC(50) in PAIII and PC-3M cells for Selenocoxib-1 was about 5 microM, while for Celecoxib it was more than 20 microM. Selenocoxib-1 induced apoptosis in a dose-dependent manner in the PAIII cells. COX-2 expression in PAIII cells was downregulated by Celecoxib and Selenocoxib-1 at 20 and 5 microM, respectively; the COX-2 activity was, however, not affected by Selenocoxib-1. Following treatment with Selenocoxib-1, PAIII cells resulted in dose-dependent decrease in HIF-1alpha, p-AKT and Bcl-2 levels. A reduction in weights was observed in subcutaneous tumors produced by PAIII cells pretreated with Selenocoxib-1 as compared to Celecoxib in LW rats. Further, following 1 week Selenocoxib-1 treatment of PAIII tumors resulted in significant reduction of tumor weights. This study demonstrates that Selenocoxib-1 is more effective against prostate cancer than Celecoxib.


Asunto(s)
Adenocarcinoma/patología , Antineoplásicos/farmacología , Compuestos de Organoselenio/farmacología , Neoplasias de la Próstata/patología , Sulfonamidas/farmacología , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Ratas , Ratas Wistar , Selenio/sangre
15.
Chem Biol Interact ; 177(3): 173-80, 2009 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-19038236

RESUMEN

Human papillomavirus (HPV) infection is an established etiological factor for cervical cancer. Epidemiological studies suggest that smoking in combination with HPV infection plays a significant role in the etiology of this disease. We have previously shown that the tobacco carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is present in human cervical mucus. Here, we hypothesized that treatment of HPV-16-immortalized human ectocervical cells (Ecto1/E6E7) with NNK would alter the expression of genes involved in cellular transformation. Ecto1/E6E7 cells were treated with water (vehicle control) alone or with 1 microM, 10 microM, and 100 microM of NNK in water for 12 weeks. The colony-forming efficiency increased following NNK treatment; the maximum effect was observed after 12 weeks with 100 microM NNK. Microarray analysis revealed that, independent of the dose of NNK, expression of 30 genes was significantly altered; 22 of these genes showed a dose-response pattern. Genes identified are categorized as immune response (LTB4R), RNA surveillance pathway (SMG1), metabolism (ALDH7A1), genes frequently expressed in later stages of neoplastic development (MT1F), DNA binding (HIST3H3 and CHD1L), and protein biosynthesis (UBA52). Selected genes were confirmed by qRT-PCR. Western blot analysis indicates that phosphorylation of histone 3 at serine 10, a marker of cellular transformation, was up-regulated in cells treated with NNK. This is the first study showing that NNK can alter gene expression that may, in part, account for transformation of HPV-immortalized human cervical cells. The results support previous epidemiological observations that, in addition to HPV, tobacco smoking also plays an important role in the development of cervical cancer.


Asunto(s)
Alphapapillomavirus/patogenicidad , Carcinógenos/toxicidad , Transformación Celular Viral , Cuello del Útero/efectos de los fármacos , Perfilación de la Expresión Génica , Nicotina/química , Nitrosaminas/toxicidad , Western Blotting , Carcinógenos/aislamiento & purificación , Línea Celular Transformada , Cuello del Útero/citología , Cuello del Útero/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Histonas/metabolismo , Humanos , Nitrosaminas/aislamiento & purificación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Cancer Epidemiol Biomarkers Prev ; 16(2): 228-35, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17301254

RESUMEN

The nicotine-derived nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is one of the most potent lung carcinogens in rodents. Several epidemiologic studies indicated that the development of lung cancer in smokers is influenced by the type and amount of dietary polyunsaturated fatty acids. A high corn oil diet has been shown to increase lung tumor volume and to decrease tumor latency in rats treated with NNK. In this study, we investigated the effects of dietary polyunsaturated fatty acids in the form of corn oil or fish oil on lung proteomes in F344 rats treated with or without NNK. The fish oil diet contained 17% fish oil and 3% corn oil, and the corn oil diet contained 20% corn oil. Rats were sacrificed after 3 months, and lungs were excised. Whole lung tissue proteins were separated by two-dimensional liquid chromatography, and differentially expressed proteins were identified by trypsin digestion and tandem mass spectrometry. Apolipoprotein A-I and Clara cell 17-kDa protein were overexpressed in the lungs of rats fed corn oil diet, compared with fish oil diet. NNK further enhanced their expression in rats fed corn oil diet; this effect was not observed in animals fed fish oil diet. The results suggest that the elevated levels of apolipoprotein A-I and Clara cell 17-kDa protein may be involved in the development of NNK-induced lung cancer in rats fed a high corn oil diet. Therefore, we propose that both proteins may serve as potential biomarkers in future molecular epidemiologic and clinical chemoprevention intervention studies.


Asunto(s)
Apolipoproteína A-I/biosíntesis , Aceite de Maíz/farmacología , Dieta , Neoplasias Pulmonares/inducido químicamente , Proteoma/metabolismo , Uteroglobina/biosíntesis , Análisis de Varianza , Animales , Biomarcadores , Western Blotting , Cromatografía Liquida , Aceites de Pescado/farmacología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/prevención & control , Nitrosaminas , Proyectos Piloto , Proteoma/efectos de los fármacos , Ratas , Ratas Endogámicas F344
17.
Virology ; 307(1): 98-115, 2003 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-12667818

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) utilizes CD4 as a primary receptor for viral entry and any of several 7-transmembrane chemokine receptors, including CCR5, as a co-receptor. Previous studies have demonstrated that multiple extracellular domains (ECDs) of CCR5 contribute to co-receptor function; here we applied genetic footprinting to CCR5 to confirm and extend those investigations. In genetic footprinting, a duplex oligonucleotide is inserted into the DNA sequence of interest by use of either a bacterial transposase or retroviral integrase. Here, CCR5 mutants were analyzed in bulk for their ability to be expressed on the recipient cell surface and to mediate viral entry of R5 HIV isolates. Most of the approximately 150 CCR5 mutants were not expressed on the cell surface. Of those remaining, 8 were specifically reduced or absent after macrophage (M)-tropic HIV infection, confirming a critical role of ECDs three (extracellular loop 2 or ECL2) and possibly four (ECL3) in viral entry. Mutational and functional analyses of ECD4 (ECL3) suggest it is under severe topological constraint for CCR5 surface expression and are consistent with it contributing to co-receptor function.


Asunto(s)
VIH/fisiología , Mutación , Receptores CCR5/genética , Secuencia de Aminoácidos , Secuencia de Bases , Línea Celular , Membrana Celular/ultraestructura , Huella de ADN , Cartilla de ADN , Humanos , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Insercional , Reacción en Cadena de la Polimerasa , Conformación Proteica , Receptores CCR5/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...