Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38096217

RESUMEN

The genus Acacia is a large group of woody legumes containing an enormous amount of morphological diversity in leaf shape. This diversity is at least in part the result of an innovation in leaf development where many Acacia species are capable of developing leaves of both bifacial and unifacial morphologies. While not unique in the plant kingdom, unifaciality is most commonly associated with monocots, and its developmental genetic mechanisms have yet to be explored beyond this group. In this study, we identify an accession of Acacia crassicarpa with high regeneration rates and isolate a clone for genome sequencing. We generate a chromosome-level assembly of this readily transformable clone, and using comparative analyses, confirm a whole-genome duplication unique to Caesalpinoid legumes. This resource will be important for future work examining genome evolution in legumes and the unique developmental genetic mechanisms underlying unifacial morphogenesis in Acacia.


Asunto(s)
Acacia , Animales , Acacia/genética , Cresta y Barbas , Secuencia de Bases , Cromosomas
3.
Front Genome Ed ; 5: 1289416, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965302

RESUMEN

Parasitic plants pose a significant threat to global agriculture, causing substantial crop losses and hampering food security. In recent years, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) gene-editing technology has emerged as a promising tool for developing resistance against various plant pathogens. Its application in combating parasitic plants, however, remains largely unexplored. This review aims to summarise current knowledge and research gaps in utilising CRISPR to develop resistance against parasitic plants. First, we outline recent improvements in CRISPR gene editing tools, and what has been used to combat various plant pathogens. To realise the immense potential of CRISPR, a greater understanding of the genetic basis underlying parasitic plant-host interactions is critical to identify suitable target genes for modification. Therefore, we discuss the intricate interactions between parasitic plants and their hosts, highlighting essential genes and molecular mechanisms involved in defence response and multilayer resistance. These include host resistance responses directly repressing parasitic plant germination or growth and indirectly influencing parasitic plant development via manipulating environmental factors. Finally, we evaluate CRISPR-mediated effectiveness and long-term implications for host resistance and crop improvement, including inducible resistance response and tissue-specific activity. In conclusion, this review highlights the challenges and opportunities CRISPR technology provides to combat parasitic plants and provides insights for future research directions to safeguard global agricultural productivity.

4.
Curr Opin Plant Biol ; 76: 102474, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37804608

RESUMEN

Comparative transcriptomics has emerged as a powerful approach that allows us to unravel the genetic basis of organ morphogenesis and its diversification processes during evolution. However, the application of comparative transcriptomics in studying plant morphological diversity addresses challenges such as identifying homologous gene pairs, selecting appropriate developmental stages for comparison, and extracting biologically meaningful networks. Methods such as phylostratigraphy, clustering, and gene co-expression networks are explored to identify functionally equivalent genes, align developmental stages, and uncover gene regulatory relationships. In the current review, we highlight the importance of these approaches in overcoming the complexity of plant genomes, the impact of heterochrony on stage alignment, and the integration of gene networks with additional data for a comprehensive understanding of morphological evolution.


Asunto(s)
Evolución Biológica , Perfilación de la Expresión Génica , Morfogénesis , Redes Reguladoras de Genes , Plantas/genética
5.
Front Plant Sci ; 13: 1086384, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578337

RESUMEN

Parasitic plants are notorious for causing serious agricultural losses in many countries. Specialized intrusive organs, haustoria, confer on parasitic plants the ability to acquire water and nutrients from their host plants. Investigating the mechanism involved in haustorium development not only reveals the fascinating mystery of how autotrophic plants evolved parasitism but also provides the foundation for developing more effective methods to control the agricultural damage caused by parasitic plants. Cuscuta species, also known as dodders, are one of the most well-known and widely spread stem holoparasitic plants. Although progress has been made recently in understanding the evolution and development of haustoria in root parasitic plants, more and more studies indicate that the behaviors between root and stem haustorium formation are distinct, and the mechanisms involved in the formation of these organs remain largely unknown. Unlike most endoparasites and root holoparasitic plants, which have high host-specificity and self- or kin-recognition to avoid forming haustoria on themselves or closely related species, auto-parasitism and hyper-parasitism are commonly observed among Cuscuta species. In this review, we summarize the current understanding of haustorium development in dodders and the unique characteristics of their parasitizing behaviors. We also outline the advantages of using Cuscuta species as model organisms for haustorium development in stem holoparasitic plants, the current unknown mysteries and limitations in the Cuscuta system, and potential future research directions to overcome these challenges.

7.
Nat Commun ; 13(1): 3729, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764640

RESUMEN

The repeated, rapid and often pronounced patterns of evolutionary divergence observed in insular plants, or the 'plant island syndrome', include changes in leaf phenotypes, growth, as well as the acquisition of a perennial lifestyle. Here, we sequence and describe the genome of the critically endangered, Galápagos-endemic species Scalesia atractyloides Arnot., obtaining a chromosome-resolved, 3.2-Gbp assembly containing 43,093 candidate gene models. Using a combination of fossil transposable elements, k-mer spectra analyses and orthologue assignment, we identify the two ancestral genomes, and date their divergence and the polyploidization event, concluding that the ancestor of all extant Scalesia species was an allotetraploid. There are a comparable number of genes and transposable elements across the two subgenomes, and while their synteny has been mostly conserved, we find multiple inversions that may have facilitated adaptation. We identify clear signatures of selection across genes associated with vascular development, growth, adaptation to salinity and flowering time, thus finding compelling evidence for a genomic basis of the island syndrome in one of Darwin's giant daisies.


Asunto(s)
Elementos Transponibles de ADN , Genómica , Evolución Biológica , Elementos Transponibles de ADN/genética , Sintenía/genética
8.
Dev Cell ; 57(9): 1177-1192.e6, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35504287

RESUMEN

Understanding how roots modulate development under varied irrigation or rainfall is crucial for development of climate-resilient crops. We established a toolbox of tagged rice lines to profile translating mRNAs and chromatin accessibility within specific cell populations. We used these to study roots in a range of environments: plates in the lab, controlled greenhouse stress and recovery conditions, and outdoors in a paddy. Integration of chromatin and mRNA data resolves regulatory networks of the following: cycle genes in proliferating cells that attenuate DNA synthesis under submergence; genes involved in auxin signaling, the circadian clock, and small RNA regulation in ground tissue; and suberin biosynthesis, iron transporters, and nitrogen assimilation in endodermal/exodermal cells modulated with water availability. By applying a systems approach, we identify known and candidate driver transcription factors of water-deficit responses and xylem development plasticity. Collectively, this resource will facilitate genetic improvements in root systems for optimal climate resilience.


Asunto(s)
Oryza , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Agua/metabolismo
9.
Plant Cell ; 34(7): 2534-2548, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35441681

RESUMEN

The basic mechanisms of leaf development have been revealed through a combination of genetics and intense analyses in select model species. The genetic basis for diversity in leaf morphology seen in nature is also being unraveled through recent advances in techniques and technologies related to genomics and transcriptomics, which have had a major impact on these comparative studies. However, this has led to the emergence of new unresolved questions about the mechanisms that generate the diversity of leaf form. Here, we provide a review of the current knowledge of the fundamental molecular genetic mechanisms underlying leaf development with an emphasis on natural variation and conserved gene regulatory networks involved in leaf development. Beyond that, we discuss open questions/enigmas in the area of leaf development, how recent technologies can best be deployed to generate a unified understanding of leaf diversity and its evolution, and what untapped fields lie ahead.


Asunto(s)
Genómica , Hojas de la Planta , Redes Reguladoras de Genes , Transcriptoma
10.
Annu Rev Plant Biol ; 73: 433-455, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35363532

RESUMEN

In contrast to most autotrophic plants, which produce carbohydrates from carbon dioxide using photosynthesis, parasitic plants obtain water and nutrients by parasitizing host plants. Many important crop plants are infested by these heterotrophic plants, leading to severe agricultural loss and reduced food security. Understanding how host plants perceive and resist parasitic plants provides insight into underlying defense mechanisms and the potential for agricultural applications. In this review, we offer a comprehensive overview of the current understanding of host perception of parasitic plants and the pre-attachment and post-attachment defense responses mounted by the host. Since most current research overlooks the role of organ specificity in resistance responses, we also summarize the current understanding and cases of cross-organ parasitism, which indicates nonconventional haustorial connections on other host organs, for example, when stem parasitic plants form haustoria on their host roots. Understanding how different tissue types respond to parasitic plants could provide the potential for developing a universal resistance mechanism in crops against both root and stem parasitic plants.


Asunto(s)
Parásitos , Animales , Productos Agrícolas/parasitología , Interacciones Huésped-Parásitos/fisiología , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...