RESUMEN
Adar null mutant mouse embryos die with aberrant double-stranded RNA (dsRNA)-driven interferon induction, and Adar Mavs double mutants, in which interferon induction is prevented, die soon after birth. Protein kinase R (Pkr) is aberrantly activated in Adar Mavs mouse pup intestines before death, intestinal crypt cells die, and intestinal villi are lost. Adar Mavs Eifak2 (Pkr) triple mutant mice rescue all defects and have long-term survival. Adenosine deaminase acting on RNA 1 (ADAR1) and PKR co-immunoprecipitate from cells, suggesting PKR inhibition by direct interaction. AlphaFold studies on an inhibitory PKR dsRNA binding domain (dsRBD)-kinase domain interaction before dsRNA binding and on an inhibitory ADAR1 dsRBD3-PKR kinase domain interaction on dsRNA provide a testable model of the inhibition. Wild-type or editing-inactive human ADAR1 expressed in A549 cells inhibits activation of endogenous PKR. ADAR1 dsRNA binding is required for, but is not sufficient for, PKR inhibition. Mutating the ADAR1 dsRBD3-PKR contact prevents co-immunoprecipitation, ADAR1 inhibition of PKR activity, and co-localization of ADAR1 and PKR in cells.
Asunto(s)
Adenosina Desaminasa , ARN Bicatenario , Proteínas de Unión al ARN , eIF-2 Quinasa , Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/genética , eIF-2 Quinasa/metabolismo , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Humanos , Animales , Ratones , Unión Proteica , Activación Enzimática , Células A549 , Dominios ProteicosRESUMEN
Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in dsRNA. ADAR editing in pre-mRNAs recodes open reading frames and alters splicing, mRNA structure and interactions with miRNAs. Here, we review ADAR gene expression, splice forms, posttranslational modifications, subcellular localizations and functions of ADAR protein isoforms. ADAR1 edits cellular dsRNA to prevent aberrant activation of cytoplasmic antiviral dsRNA sensors; ADAR1 mutations lead to aberrant expression of interferon in Aicardi Goutières syndrome (AGS), a human congenital encephalopathy. We review related studies on mouse Adar1 mutant phenotypes, their rescues by preventing signaling from the antiviral RIG-I-like Sensors (RLRs), as well as Adar1 mechanisms in innate immune suppression and other roles of Adar1, including editing-independent effects. ADAR2, expressed primarily in CNS, edits glutamate receptor transcripts; regulation of ADAR2 activity in response to neuronal activity mediates homeostatic synaptic plasticity of vertebrate AMPA and kainite receptors. In Drosophila, synapses and synaptic proteins show dramatic decreases at night during sleep; Drosophila Adar, an orthologue of ADAR2, edits hundreds of mRNAs; the most conserved editing events occur in transcripts encoding synapse-associated proteins. Adar mutant flies exhibit locomotion defects associated with very increased sleep pressure resulting from a failure of homeostatic synaptic processes. A study on Adar2 mutant mice identifies a new role in circadian rhythms, acting indirectly through miRNAs such as let-7 to modulate levels of let-7 target mRNAs; ADAR1 also regulates let-7 miRNA processing. Drosophila ADAR, an orthologue of vertebrate ADAR2, also regulates let-7 miRNA levels and Adar mutant flies have a circadian mutant phenotype.