Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 127(40): 8347-8353, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37769184

RESUMEN

We report a study of the temperature dependence of 35Cl nuclear quadrupole resonance (NQR) transition energies and spin-lattice relaxation times (T1) for 235U-depleted dicesium uranyl tetrachloride (Cs2UO2Cl4) aimed at elucidating electronic interactions between the uranium center and atoms in the equatorial plane of the UO22+ ion. The transition frequency decreases slowly with temperature below 75 K and with a more rapid linear dependence above this temperature. The spin-lattice relaxation time becomes shorter with temperature, and as temperatures increase, the T1 decrease becomes nearly quadratic. The observed trends are reproduced by a model that assumes phonon-induced fluctuations of the electric field gradient tensor and partial electron delocalization from Cl to U. The fit of the theoretical model to experimental data allows a Debye temperature of 96 K to be estimated. The generalization of this approach to investigations of covalency in actinide-ligand bonding is examined.

2.
Inorg Chem ; 61(9): 3821-3831, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-34817159

RESUMEN

Electric field gradient (EFG) tensors in the equatorial plane of the linear UO22+ ion have been measured by nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) experiments and computed by relativistic Kohn-Sham methods with and without environment embedding for Cs2UO2Cl4 and Cs2UO2Br4. This approach expands the possibilities for probing the electronic structure in uranyl complexes beyond the strongly covalent U-O bonds. The combined analyses find that one of the two largest principal EFG tensor components at the halogen sites points along the U-X bond (X = Cl, Br), and the second is parallel to the UO22+ ion; in Cs2UO2Cl4, the components are nearly equal in magnitude, whereas in Cs2UO2Br4, due to short-range bromide-cesium interactions, the equatorial component is dominant for one pair of Br sites and the axial component is larger for the second pair. The directions and relative magnitudes of the field gradient principal axes are found to be sensitive to the σ and π electron donation by the ligands and the model of the environment. Chlorine-35 NQR spectra of 235U-depleted and 235U-enriched Cs2UO2Cl4 exhibited no uranium-isotope-dependent shift, but the resonance of the depleted sample displayed a 58% broader line width.

3.
J Chem Phys ; 154(21): 211101, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34240987

RESUMEN

Fluorine-19 magnetic shielding tensors have been measured in a series of actinide tetrafluorides (AnF4) by solid state nuclear magnetic resonance spectroscopy. Tetravalent actinide centers with 0-8 valence electrons can form tetrafluorides with the same monoclinic structure type, making these compounds an attractive choice for a systematic study of the variation in the electronic structure across the 5f row of the Periodic Table. Pronounced deviations from predictions based on localized valence electron models have been detected by these experiments, which suggests that this approach may be used as a quantitative probe of electronic correlations.

4.
Chem Commun (Camb) ; 54(75): 10578-10581, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30175362

RESUMEN

Literature casts einsteinium as a departure from earlier transplutonium actinides, with a decrease in stability constants with aminopolycarboxylate ligands. This report studies transplutonium chemistry - including Am, Bk, Cf, and Es - with aminopolycarboxylate ligands. Es complexation follows similar thermodynamic and structural trends established by the earlier actinides, consistent with first-principle calculations.

5.
Anal Chem ; 89(17): 9354-9359, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28727912

RESUMEN

Development of more effective, reliable, and fast methods for monitoring process streams is a growing opportunity for analytical applications. Many fields can benefit from online monitoring, including the nuclear fuel cycle where improved methods for monitoring radioactive materials will facilitate maintenance of proper safeguards and ensure safe and efficient processing of materials. Online process monitoring with a focus on optical spectroscopy can provide a fast, nondestructive method for monitoring chemical species. However, identification and quantification of species can be hindered by the complexity of the solutions if bands overlap or show condition-dependent spectral features. Plutonium(IV) is one example of a species which displays significant spectral variation with changing nitric acid concentration. Single variate analysis (i.e., Beer's Law) is difficult to apply to the quantification of Pu(IV) unless the nitric acid concentration is known and separate calibration curves have been made for all possible acid strengths. Multivariate or chemometric analysis is an approach that allows for the accurate quantification of Pu(IV) without a priori knowledge of nitric acid concentration.

6.
Analyst ; 142(13): 2426-2433, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28590000

RESUMEN

A Lewis cell was designed and constructed for investigating solvent extraction systems by spectrophotometrically monitoring both the organic and aqueous phases in real time. This new Lewis cell was tested and shown to perform well compared to other previously reported Lewis cell designs. The advantage of the new design is that the spectroscopic measurement allows determination of not only metal ion concentrations, but also information regarding chemical speciation - information not available with previous Lewis cell designs. For convenience, the new Lewis cell design was dubbed COSMOFLEX (COntinuous Spectroscopic MOnitoring of Forrest's Liquid-liquid EXtraction cell). After construction performance testing was done for establishing the ideal stir speed range, UV-Vis measured concentration and D value determination. Each one of these tests was satisfactorily passed.

7.
Inorg Chem ; 55(4): 1633-41, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26815878

RESUMEN

The complexes formed during the extraction of neodymium(III) into hydrophobic solvents containing acidic organophosphorus extractants were probed by single-crystal X-ray diffractometry, visible spectrophotometry, and Fourier-transform infrared spectroscopy. The crystal structure of the compound Nd(DMP)3 (1, DMP = dimethyl phosphate) revealed a polymeric arrangement in which each Nd(III) center is surrounded by six DMP oxygen atoms in a pseudo-octahedral environment. Adjacent Nd(III) ions are bridged by (MeO)2POO(-) anions, forming the polymeric network. The diffuse reflectance visible spectrum of 1 is nearly identical to that of the solid that is formed when an n-dodecane solution of di(2-ethylhexyl)phosphoric acid (HA) is saturated with Nd(III), indicating a similar coordination environment around the Nd center in the NdA3 solid. The visible spectrum of the HA solution fully loaded with Nd(III) is very similar to that of the NdA3 material, both displaying hypersensitive bands characteristic of an pseudo-octahedral coordination environment around Nd. These spectral characteristics persisted across a wide range of organic Nd concentrations, suggesting that the pseudo-octahedral coordination environment is maintained from dilute to saturated conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA