Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Exp Gerontol ; 196: 112569, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39226946

RESUMEN

BACKGROUND: Dementia poses a significant global health challenge. Anthocyanins neutralize free radicals, modulate signaling pathways, inhibit pro-inflammatory genes, and suppress cytokine production and may thus have positive cognitive effects in people at increased risk of dementia. We aim to investigate the effects of purified anthocyanins on cognitive function in people at increased risk of dementia according to their inflammation status based on blood-based inflammatory biomarkers. METHODS: This is a secondary analysis of a 24-week randomized, double-blind, placebo-controlled trial. Cluster analysis was performed to categorize two groups based on their individual inflammatory biomarker profile using multiplex sandwich ELISA for the quantitative measurement of cytokines. Descriptive statistics and longitudinal models assessed cognitive outcomes. The primary comparison was the group difference at week 24 based on a modified intention-to-treat analysis. RESULTS: Cluster analysis revealed two distinct inflammatory biomarker profiles. In Cluster 1 (high levels of inflammation biomarkers), anthocyanin treatment showed a statistically significant improvement on cognitive function compared to placebo at 24 weeks. No significant differences were observed in Cluster 2 (low levels of inflammation biomarkers). The demographic characteristics, cognitive scores, and biomarker distributions were similar between treatment groups at baseline. However, cluster 1 exhibited higher BMI, diabetes prevalence, medication usage, and lower HDL cholesterol levels. CONCLUSION: Individuals with elevated levels of inflammation markers benefited from anthocyanin treatment to enhance cognitive performance, whereas those with lower levels did not. The anti-inflammatory and antioxidant properties of anthocyanins make them a promising intervention, and future prospective trials in people with increased inflammation are warranted.

2.
Antioxidants (Basel) ; 13(8)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39199240

RESUMEN

DailyColors™ is a supplement made up of several phytonutrients that aims to replicate elements from the Mediterranean diet. These include fruit, berry and vegetable extracts that are rich in key phytochemicals such as Quercetin, Catechins, Phloretin, Ellagic Acid, and Anthocyanins. Here, we determined the effects of DailyColors™ on the blood biomarkers associated with the diverse mechanisms implicated in ageing and age-related diseases, including mitochondrial function, inflammation, and oxidative stress, as well as on saliva's DNA methylation pattern. Thirty adult participants (mean (SD) age = 67.0 (7.5) years) with a body mass index over 25 were recruited into this randomised, double-blind, placebo-controlled, cross-over trial (two one-week treatment periods, separated by a one-week washout period). During the placebo period, we observed a significant increase in blood CD38 concentrations from the baseline to 24 h (p-value = 0.019). This was not observed in the active period. Increased CD38 is reportedly associated with subsequent mitochondrial dysfunction and inflammation. Next, there was a decreasing trend of plasma 4-HNE levels, an oxidative stress biomarker, after a one-week intake of DailyColors™. Furthermore, following a one-month open-label follow-up in 26 participants, we observed hypermethylation of the candidate CpG site cg13108341 (q-value = 0.021), which was against the observed trend for this site during ageing. Taken together, while minimal effects were observed in this study, DailyColors™ supplementation may be beneficial by altering and alleviating age-related changes. Longer and larger scale trials of DailyColors™ supplementation are warranted.

4.
Front Aging ; 5: 1416447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193426
5.
Front Aging ; 5: 1417455, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081393

RESUMEN

In recent years, there has been a paradigm shift with regards to ageing, challenging its traditional perception as an inevitable and natural process. Researchers have collectively identified hallmarks of ageing, nine of which were initially proposed in 2013 and expanded in 2023 to include disabled macroautophagy, chronic inflammation, and dysbiosis, enhancing our understanding of the ageing process at microscopic, cellular, and system-wide levels. Strategies to manipulate these hallmarks present opportunities for slowing, preventing, or reversing age-related diseases, thereby promoting longevity. The interdependence of these hallmarks underscores the necessity of a comprehensive, systems-based approach to address the complex processes contributing to ageing. As a primary risk factor for various diseases, ageing diminishes healthspan, leading to extended periods of compromised health and multiple age-related conditions towards the end of life. The significant gap between healthspan and lifespan holds substantial economic and societal implications. The inaugural Longevity Med Summit (4-5 May 2023, Cascais, Portugal) provided an international forum to discuss the academic and industry landscape of healthy longevity research, preventive medicine and clinical practice to enhance healthspan.

7.
Biochem Soc Trans ; 52(1): 269-278, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38372426

RESUMEN

Recent evidence highlights the importance of trace metal micronutrients such as zinc (Zn) in coronary and vascular diseases. Zn2+ plays a signalling role in modulating endothelial nitric oxide synthase and protects the endothelium against oxidative stress by up-regulation of glutathione synthesis. Excessive accumulation of Zn2+ in endothelial cells leads to apoptotic cell death resulting from dysregulation of glutathione and mitochondrial ATP synthesis, whereas zinc deficiency induces an inflammatory phenotype, associated with increased monocyte adhesion. Nuclear factor-E2-related factor 2 (NRF2) is a transcription factor known to target hundreds of different genes. Activation of NRF2 affects redox metabolism, autophagy, cell proliferation, remodelling of the extracellular matrix and wound healing. As a redox-inert metal ion, Zn has emerged as a biomarker in diagnosis and as a therapeutic approach for oxidative-related diseases due to its close link to NRF2 signalling. In non-vascular cell types, Zn has been shown to modify conformations of the NRF2 negative regulators Kelch-like ECH-associated Protein 1 (KEAP1) and glycogen synthase kinase 3ß (GSK3ß) and to promote degradation of BACH1, a transcriptional suppressor of select NRF2 genes. Zn can affect phosphorylation signalling, including mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinases and protein kinase C, which facilitate NRF2 phosphorylation and nuclear translocation. Notably, several NRF2-targeted proteins have been suggested to modify cellular Zn concentration via Zn exporters (ZnTs) and importers (ZIPs) and the Zn buffering protein metallothionein. This review summarises the cross-talk between reactive oxygen species, Zn and NRF2 in antioxidant responses of vascular cells against oxidative stress and hypoxia/reoxygenation.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Zinc , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Zinc/metabolismo , Células Endoteliales/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Glutatión/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-38289789

RESUMEN

Unhealthy aging poses a global challenge with profound healthcare and socioeconomic implications. Slowing down the aging process offers a promising approach to reduce the burden of a number of age-related diseases, such as dementia, and promoting healthy longevity in the old population. In response to the challenge of the aging population and with a view to the future, Norway and the United Kingdom are fostering collaborations, supported by a "Money Follows Cooperation agreement" between the 2 nations. The inaugural Norway-UK joint meeting on aging and dementia gathered leading experts on aging and dementia from the 2 nations to share their latest discoveries in related fields. Since aging is an international challenge, and to foster collaborations, we also invited leading scholars from 11 additional countries to join this event. This report provides a summary of the conference, highlighting recent progress on molecular aging mechanisms, genetic risk factors, DNA damage and repair, mitophagy, autophagy, as well as progress on a series of clinical trials (eg, using NAD+ precursors). The meeting facilitated dialogue among policymakers, administrative leaders, researchers, and clinical experts, aiming to promote international research collaborations and to translate findings into clinical applications and interventions to advance healthy aging.


Asunto(s)
Envejecimiento , Demencia , Humanos , Anciano , Longevidad , Demencia/prevención & control , Demencia/epidemiología , Reino Unido , Noruega
9.
Lancet Healthy Longev ; 5(1): e17-e30, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38183996

RESUMEN

BACKGROUND: Sexually active older adults are often more susceptible to HIV and other sexually transmitted infections (STIs) due to various health conditions (especially a weakened immune system) and low use of condoms. We aimed to assess the global, regional, and national burdens and trends of HIV and other STIs in older adults from 1990 to 2019. METHODS: We retrieved data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 on the incidence and disability-adjusted life-years (DALYs) of HIV and other STIs (syphilis, chlamydia, gonorrhoea, trichomoniasis, and genital herpes) for older adults aged 60-89 years in 204 countries and territories from 1990 to 2019. Estimated annual percentage changes in the age-standardised incidence and DALY rates of HIV and other STIs, by age, sex, and Socio-demographic Index (SDI), were calculated to quantify the temporal trends. Spearman correlation analysis was used to examine the relationship between age-standardised rates and SDI. FINDINGS: In 2019, among older adults globally, there were an estimated 77 327 (95% uncertainty interval 59 443 to 97 648) new cases of HIV (age-standardised incidence rate 7·6 [5·9 to 9·6] per 100 000 population) and 26 414 267 (19 777 666 to 34 860 678) new cases of other STIs (2607·1 [1952·1 to 3440·8] per 100 000). The age-standardised incidence rate decreased by an average of 2·02% per year (95% CI -2·38 to -1·66) for HIV and remained stable for other STIs (-0·02% [-0·06 to 0·01]) from 1990 to 2019. The number of DALYs globally in 2019 was 1 905 099 (95% UI 1 670 056 to 2 242 807) for HIV and 132 033 (95% UI 83 512 to 225 630) for the other STIs. The age-standardised DALY rate remained stable from 1990 to 2019, with an average change of 0·97% (95% CI -0·54 to 2·50) per year globally for HIV but decreased by an annual average of 1·55% (95% CI -1·66 to -1·43) for other STIs. Despite the global decrease in the age-standardised incidence rate of HIV in older people from 1990 to 2019, many regions showed increases, with the largest increases seen in eastern Europe (average annual change 17·84% [14·16 to 21·63], central Asia (14·26% [11·35 to 17·25]), and high-income Asia Pacific (7·52% [6·54 to 8·51]). Regionally, the age-standardised incidence and DALY rates of HIV and other STIs decreased with increases in the SDI. INTERPRETATION: Although the incidence and DALY rates of HIV and STIs either declined or remained stable from 1990 to 2019, there were regional and demographic disparities. Health-care providers should be aware of the effects of ageing societies and other societal factors on the risk of HIV and other STIs in older adults, and develop age-appropriate interventions. The disparities in the allocation of health-care resources for older adults among regions of different SDIs should be addressed. FUNDING: Natural Science Foundation of China, Fujian Province's Third Batch of Flexible Introduction of High-Level Medical Talent Teams, Science and Technology Innovation Team (Tianshan Innovation Team) Project of Xinjiang Uighur Autonomous Region, Cure Alzheimer's Fund, Helse Sør-Øst, the Research Council of Norway, Molecule/VitaDAO, NordForsk Foundation, Akershus University Hospital, the Civitan Norges Forskningsfond for Alzheimers Sykdom, the Czech Republic-Norway KAPPA programme, and the Rosa Sløyfe/Norwegian Cancer Society & Norwegian Breast Cancer Society.


Asunto(s)
Neoplasias de la Mama , Gonorrea , Infecciones por VIH , Herpes Genital , Enfermedades de Transmisión Sexual , Humanos , Anciano , Femenino , Carga Global de Enfermedades , Enfermedades de Transmisión Sexual/epidemiología , Infecciones por VIH/epidemiología
11.
JCI Insight ; 8(24)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37847559

RESUMEN

Use of autologous cells isolated from elderly patients with multiple comorbidities may account for the modest efficacy of cell therapy in patients with chronic limb threatening ischemia (CLTI). We aimed to determine whether proarteriogenic monocyte/macrophages (Mo/MΦs) from patients with CLTI were functionally impaired and to demonstrate the mechanisms related to any impairment. Proarteriogenic Mo/MΦs isolated from patients with CLTI were found to have an impaired capacity to promote neovascularization in vitro and in vivo compared with those isolated from healthy controls. This was associated with increased expression of human HIV-1 TAT interactive protein-2 (HTATIP2), a transcription factor known to suppress angiogenesis/arteriogenesis. Silencing HTATIP2 restored the functional capacity of CLTI Mo/MΦs, which was associated with increased expression of arteriogenic regulators Neuropilin-1 and Angiopoietin-1, and their ability to enhance angiogenic (endothelial tubule formation) and arteriogenic (smooth muscle proliferation) processes in vitro. In support of the translational relevance of our findings, silencing HTATIP2 in proarteriogenic Mo/MΦs isolated from patients with CLTI rescued their capacity to enhance limb perfusion in the ischemic hindlimb by effecting greater angiogenesis and arteriogenesis. Ex vivo modulation of HTATIP2 may offer a strategy for rescuing the functional impairment of pro-angio/arteriogenic Mo/MΦs prior to autologous delivery and increase the likelihood of clinical efficacy.


Asunto(s)
Monocitos , Neovascularización Fisiológica , Animales , Ratones , Humanos , Anciano , Monocitos/metabolismo , Circulación Colateral , Músculo Esquelético/metabolismo , Ratones Noqueados , Isquemia/metabolismo , Factores de Transcripción , Acetiltransferasas
13.
Kidney Int Rep ; 8(7): 1380-1388, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37441489

RESUMEN

Introduction: Aortic pulse wave velocity (Ao-PWV) predicts cardiovascular and kidney disease in type 2 diabetes (T2D). Klotho is a circulating antiaging hormone (sKlotho) with putative cardiorenal protective effects. The relationship between sKlotho and Ao-PWV in diabetic kidney disease (DKD) is unknown. Methods: In a cross-sectional cohort study, the correlation of sKlotho measured by a validated immunoassay, and Ao-PWV measured by applanation tonometry, was investigated in 172 participants with T2D and early stage DKD (all had estimated glomerular filtration rate [eGFR] >45 ml/min) on stable renin angiotensin system (RAS) inhibition. In cultured human aortic smooth muscle cells (HASMCs) stimulated with angiotensin II (AngII), the effects of recombinant human sKlotho pretreatment were assessed on intracellular calcium ([Ca2+]i) responses and expression of proteins associated with proosteogenic HASMC phenotypes. Results: Mean (range) age of the cohort was 61.3 years (40-82) and 65% were male. Mean (±SD) Ao-PWV was 11.4 (±2.3) m/s, eGFR 78.8 (±23.5) and median (interquartile range) sKlotho of 358.5 (194.2-706.3) pg/ml. In multivariable linear regression analyses, we observed a statistically significant inverse relationship between sKlotho and Ao-PWV, which was independent of clinical risk factors for cardiorenal disease. Pretreatment of cultured HASMC with sKlotho significantly attenuated AngII-stimulated [Ca2+]i transients and reduced osteogenic collagen (Col1a2) expression. Conclusions: In individuals with T2D and early DKD, lower levels of sKlotho are associated with increased Ao-PWV. Taken together with the direct effect of sKlotho on mediators of aortic wall stiffness in vitro, these findings may explain the enhanced risk of cardiorenal disease in DKD.

14.
Redox Biol ; 64: 102777, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37315344

RESUMEN

Zinc (Zn) has antioxidant, anti-inflammatory and anti-proliferative actions, with Zn dysregulation associated with coronary ischemia/reperfusion injury and smooth muscle cell dysfunction. As the majority of studies concerning Zn have been conducted under non-physiological hyperoxic conditions, we compare the effects of Zn chelation or supplementation on total intracellular Zn content, antioxidant NRF2 targeted gene transcription and hypoxia/reoxygenation-induced reactive oxygen species generation in human coronary artery smooth muscle cells (HCASMC) pre-adapted to hyperoxia (18 kPa O2) or normoxia (5 kPa O2). Expression of the smooth muscle marker SM22-α was unaffected by lowering pericellular O2, whereas calponin-1 was significantly upregulated in cells under 5 kPa O2, indicating a more physiological contractile phenotype under 5 kPa O2. Inductively coupled plasma mass spectrometry established that Zn supplementation (10 µM ZnCl2 + 0.5 µM pyrithione) significantly increased total Zn content in HCASMC under 18 but not 5 kPa O2. Zn supplementation increased metallothionein mRNA expression and NRF2 nuclear accumulation in cells under 18 or 5 kPa O2. Notably, NRF2 regulated HO-1 and NQO1 mRNA expression in response to Zn supplementation was only upregulated in cells under 18 but not 5 kPa. Furthermore, whilst hypoxia increased intracellular glutathione (GSH) in cells pre-adapted to 18 but not 5 kPa O2, reoxygenation had negligible effects on GSH or total Zn content. Reoxygenation-induced superoxide generation in cells under 18 kPa O2 was abrogated by PEG-superoxide dismutase but not by PEG-catalase, and Zn supplementation, but not Zn chelation, attenuated reoxygenation-induced superoxide generation in cells under 18 but not 5kPaO2, consistent with a lower redox stress under physiological normoxia. Our findings highlight that culture of HCASMC under physiological normoxia recapitulates an in vivo contractile phenotype and that effects of Zn on NRF2 signaling are altered by oxygen tension.


Asunto(s)
Vasos Coronarios , Hiperoxia , Humanos , Vasos Coronarios/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/metabolismo , Superóxidos/metabolismo , Zinc/farmacología , Zinc/metabolismo , Hipoxia/metabolismo , Miocitos del Músculo Liso/metabolismo , Hiperoxia/metabolismo , Glutatión/metabolismo , ARN Mensajero/metabolismo , Suplementos Dietéticos
15.
Redox Biol ; 62: 102712, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37116256

RESUMEN

Zinc is an important component of cellular antioxidant defenses and dysregulation of zinc homeostasis is a risk factor for coronary heart disease and ischemia/reperfusion injury. Intracellular homeostasis of metals, such as zinc, iron and calcium are interrelated with cellular responses to oxidative stress. Most cells experience significantly lower oxygen levels in vivo (2-10 kPa O2) compared to standard in vitro cell culture (18kPa O2). We report the first evidence that total intracellular zinc content decreases significantly in human coronary artery endothelial cells (HCAEC), but not in human coronary artery smooth muscle cells (HCASMC), after lowering of O2 levels from hyperoxia (18 kPa O2) to physiological normoxia (5 kPa O2) and hypoxia (1 kPa O2). This was paralleled by O2-dependent differences in redox phenotype based on measurements of glutathione, ATP and NRF2-targeted protein expression in HCAEC and HCASMC. NRF2-induced NQO1 expression was attenuated in both HCAEC and HCASMC under 5 kPa O2 compared to 18 kPa O2. Expression of the zinc efflux transporter ZnT1 increased in HCAEC under 5 kPa O2, whilst expression of the zinc-binding protein metallothionine (MT) decreased as O2 levels were lowered from 18 to 1 kPa O2. Negligible changes in ZnT1 and MT expression were observed in HCASMC. Silencing NRF2 transcription reduced total intracellular zinc under 18 kPa O2 in HCAEC with negligible changes in HCASMC, whilst NRF2 activation or overexpression increased zinc content in HCAEC, but not HCASMC, under 5 kPa O2. This study has identified cell type specific changes in the redox phenotype and metal profile in human coronary artery cells under physiological O2 levels. Our findings provide novel insights into the effect of NRF2 signaling on Zn content and may inform targeted therapies for cardiovascular diseases.


Asunto(s)
Células Endoteliales , Hiperoxia , Humanos , Células Endoteliales/metabolismo , Hiperoxia/metabolismo , Hipoxia/metabolismo , Miocitos del Músculo Liso/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Zinc/metabolismo
17.
Lancet Diabetes Endocrinol ; 10(3): 221-230, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35114136

RESUMEN

Current evidence suggests that severity and mortality of COVID-19 is higher in men than in women, whereas women might be at increased risk of COVID-19 reinfection and development of long COVID. Differences between sexes have been observed in other infectious diseases and in the response to vaccines. Sex-specific expression patterns of proteins mediating virus binding and entry, and divergent reactions of the immune and endocrine system, in particular the hypothalamic-pituitary-adrenal axis, in response to acute stress might explain the higher severity of COVID-19 in men. In this Personal View, we discuss how sex hormones, comorbidities, and the sex chromosome complement influence these mechanisms in the context of COVID-19. Due to its role in the severity and progression of SARS-CoV-2 infections, we argue that sexual dimorphism has potential implications for disease treatment, public health measures, and follow-up of patients predisposed to the development of long COVID. We suggest that sex differences could be considered in future pandemic surveillance and treatment of patients with COVID-19 to help to achieve better disease stratification and improved outcomes.


Asunto(s)
COVID-19 , Disparidades en el Estado de Salud , Caracteres Sexuales , COVID-19/complicaciones , COVID-19/epidemiología , COVID-19/fisiopatología , Femenino , Humanos , Sistema Hipotálamo-Hipofisario , Masculino , Sistema Hipófiso-Suprarrenal , Salud Pública , Síndrome Post Agudo de COVID-19
19.
Front Cell Dev Biol ; 9: 628039, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33889572

RESUMEN

Although human dermis contains distinct fibroblast subpopulations, the functional heterogeneity of fibroblast lines from different donors is under-appreciated. We identified one commercially sourced fibroblast line (c64a) that failed to express α-smooth muscle actin (α-SMA), a marker linked to fibroblast contractility, even when treated with transforming growth factor-ß1 (TGF-ß1). Gene expression profiling identified insulin-like growth factor 1 (IGF1) as being expressed more highly, and Asporin (ASPN) and Wnt family member 4 (WNT4) expressed at lower levels, in c64a fibroblasts compared to three fibroblast lines that had been generated in-house, independent of TGF-ß1 treatment. TGF-ß1 increased expression of C-X-C motif chemokine ligand 1 (CXCL1) in c64a cells to a greater extent than in the other lines. The c64a gene expression profile did not correspond to any dermal fibroblast subpopulation identified by single-cell RNAseq of freshly isolated human skin cells. In skin reconstitution assays, c64a fibroblasts did not support epidermal stratification as effectively as other lines tested. In fibroblast lines generated in-house, shRNA-mediated knockdown of IGF1 increased α-SMA expression without affecting epidermal stratification. Conversely, WNT4 knockdown had no consistent effect on α-SMA expression, but increased the ability of fibroblasts to support epidermal stratification. Thus, by comparing the properties of different lines of cultured dermal fibroblasts, we have identified IGF1 and WNT4 as candidate mediators of two distinct dermal functions: myofibroblast formation and epidermal maintenance.

20.
Lancet Healthy Longev ; 2(2): e105-e111, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33665645

RESUMEN

COVID-19 disproportionately affects older people, with likelihood of severe complications and death mirroring that of other age-associated diseases. Inhibition of the mechanistic target of rapamycin complex 1 (mTORC1) has been shown to delay or reverse many age-related phenotypes, including declining immune function. Rapamycin (sirolimus) and rapamycin derivatives are US Food and Drug Administration-approved inhibitors of mTORC1 with broad clinical utility and well established dosing and safety profiles. Based on preclinical and clinical evidence, a strong case can be made for immediate large-scale clinical trials to assess whether rapamycin and other mTORC1 inhibitors can prevent COVID-19 infection in these populations and also to determine whether these drugs can improve outcomes in patients with severe COVID-19.


Asunto(s)
COVID-19 , Humanos , Inhibidores mTOR , Diana Mecanicista del Complejo 1 de la Rapamicina , SARS-CoV-2 , Sirolimus , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...