RESUMEN
BACKGROUND: Maintaining low concentrations of plasma low-density lipoprotein cholesterol (LDLc) over time decreases the number of LDL particles trapped within the artery wall, slows the progression of atherosclerosis and delays the age at which mature atherosclerotic plaques develop. This substantially reduces the lifetime risk of atherosclerotic cardiovascular disease (ASCVD) events. In this context, plaque development and vulnerability result not only from lipid accumulation but also from inflammation. RESULTS: Changes in the composition of immune cells, including macrophages, dendritic cells, T cells, B cells, mast cells and neutrophils, along with altered cytokine and chemokine release, disrupt the equilibrium between inflammation and anti-inflammatory mechanisms at plaque sites. Considering that it is not a competition between LDLc and inflammation, but instead that they are partners in crime, the present narrative review aims to give an overview of the main inflammatory molecular pathways linked to raised LDLc concentrations and to describe the impact of lipid-lowering approaches on the inflammatory and lipid burden. Although remarkable changes in LDLc are driven by the most recent lipid lowering combinations, the relative reduction in plasma C-reactive protein appears to be independent of the magnitude of LDLc lowering. CONCLUSION: Identifying clinical biomarkers of inflammation (e.g. interleukin-6) and possible targets for therapy holds promise for monitoring and reducing the ASCVD burden in suitable patients.
RESUMEN
The metformin molecule dates back to over a century, but its clinical use started in the '50s. Since then, its use in diabetics has grown constantly, with over 150 million users today. The therapeutic profile also expanded, with improved understanding of novel mechanisms. Metformin has a major activity on insulin resistance, by acting on the insulin receptors and mitochondria, most likely by activation of the adenosine monophosphate-activated kinase. These and associated mechanisms lead to significant lipid lowering and body weight loss. An anti-cancer action has come up in recent years, with mechanisms partly dependent on the mitochondrial activity and also on phosphatidylinositol 3-kinase resistance occurring in some malignant tumors. The potential of metformin to raise life-length is the object of large ongoing studies and of several basic and clinical investigations. The present review article will attempt to investigate the basic mechanisms behind these diverse activities and the potential clinical benefits. Metformin may act on transcriptional activity by histone modification, DNA methylation and miRNAs. An activity on age-associated inflammation (inflammaging) may occur via activation of the nuclear factor erythroid 2 related factor and changes in gut microbiota. A senolytic activity, leading to reduction of cells with the senescent associated secretory phenotype, may be crucial in lifespan prolongation as well as in ancillary properties in age-associated diseases, such as Parkinson's disease. Telomere prolongation may be related to the activity on mitochondrial respiratory factor 1 and on peroxisome gamma proliferator coactivator 1-alpha. Very recent observations on the potential to act on the most severe neurological disorders, such as amyotrophic lateral sclerosis and frontotemporal dementia, have raised considerable hope.
Asunto(s)
Diabetes Mellitus , Hipoglucemiantes , Metformina , Neoplasias , Humanos , Metformina/uso terapéutico , Metformina/farmacología , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Longevidad/efectos de los fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacologíaRESUMEN
Statins have improved the potential to prevent cardiovascular disease events and to prolong the lives of patients. Statins, among the most widely used drugs worldwide, reduce the levels of low-density lipoprotein cholesterol (LDL-C) by an average of 30-50%. However, non-adherence to statin therapy, due to statin intolerance, might be as high as 60% after 24 months of treatment and is associated with a 70% increase in the risk of cardiovascular disease events. Statin intolerance can be classified as a complete inability to tolerate any dose of a statin or a partial intolerance with the inability to tolerate the dose necessary to achieve the patient-specific therapeutic objective. Reasons for discontinuation are many, with statin-associated muscle symptoms being cited as the most frequent reason for stopping therapy and the incidence of muscle symptoms increasing with treatment intensity. Considering the causal effect of LDL-C in the atherosclerotic process, clinicians should consider that regardless of the lipid-lowering drugs patients are willing to take, any reduction in LDL-C they achieve will afford them some benefit in reducing cardiovascular risk. Besides statins, the current therapeutic armamentarium offers different strategies to reach LDL-C targets in statin-intolerant patients (i.e. a fixed combination between a lower dose of statin plus ezetimibe, bempedoic acid, or proprotein convertase subtilisin/kexin type 9 inhibition).
RESUMEN
According to the WHO, the entire global population is exposed to air pollution levels higher than recommended for health preservation. Air pollution is a complex mixture of nano- to micro-sized particles and gaseous components that poses a major global threat to public health. Among the most important air pollutants, causal associations have been established between particulate matter (PM), mainly < 2.5 µm, and cardiovascular diseases (CVD), i.e., hypertension, coronary artery disease, ischemic stroke, congestive heart failure, arrhythmias as well as total cardiovascular mortality. Aim of this narrative review is to describe and critically discuss the proatherogenic effects of PM2.5 that have been attributed to many direct or indirect effects comprising endothelial dysfunction, a chronic low-grade inflammatory state, increased production of reactive oxygen species, mitochondrial dysfunction and activation of metalloproteases, all leading to unstable arterial plaques. Higher concentrations of air pollutants are associated with the presence of vulnerable plaques and plaque ruptures witnessing coronary artery instability. Air pollution is often disregarded as a CVD risk factor, in spite of the fact that it is one of the main modifiable factors relevant for prevention and management of CVD. Thus, not only structural actions should be taken in order to mitigate emissions, but health professionals should also take care to counsel patients on the risks of air pollution.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Material Particulado/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Aterosclerosis/etiología , Aterosclerosis/inducido químicamente , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/inducido químicamenteRESUMEN
Background: Viral infection is associated with a significant rewire of the host metabolic pathways, presenting attractive metabolic targets for intervention. Methods: We chart the metabolic response of lung epithelial cells to SARS-CoV-2 infection in primary cultures and COVID-19 patient samples and perform in vitro metabolism-focused drug screen on primary lung epithelial cells infected with different strains of the virus. We perform observational analysis of Israeli patients hospitalized due to COVID-19 and comparative epidemiological analysis from cohorts in Italy and the Veteran's Health Administration in the United States. In addition, we perform a prospective non-randomized interventional open-label study in which 15 patients hospitalized with severe COVID-19 were given 145 mg/day of nanocrystallized fenofibrate added to the standard of care. Results: SARS-CoV-2 infection produced transcriptional changes associated with increased glycolysis and lipid accumulation. Metabolism-focused drug screen showed that fenofibrate reversed lipid accumulation and blocked SARS-CoV-2 replication through a PPARα-dependent mechanism in both alpha and delta variants. Analysis of 3233 Israeli patients hospitalized due to COVID-19 supported in vitro findings. Patients taking fibrates showed significantly lower markers of immunoinflammation and faster recovery. Additional corroboration was received by comparative epidemiological analysis from cohorts in Europe and the United States. A subsequent prospective non-randomized interventional open-label study was carried out on 15 patients hospitalized with severe COVID-19. The patients were treated with 145 mg/day of nanocrystallized fenofibrate in addition to standard-of-care. Patients receiving fenofibrate demonstrated a rapid reduction in inflammation and a significantly faster recovery compared to patients admitted during the same period. Conclusions: Taken together, our data suggest that pharmacological modulation of PPARα should be strongly considered as a potential therapeutic approach for SARS-CoV-2 infection and emphasizes the need to complete the study of fenofibrate in large randomized controlled clinical trials. Funding: Funding was provided by European Research Council Consolidator Grants OCLD (project no. 681870) and generous gifts from the Nikoh Foundation and the Sam and Rina Frankel Foundation (YN). The interventional study was supported by Abbott (project FENOC0003). Clinical trial number: NCT04661930.
Asunto(s)
COVID-19 , Fenofibrato , Humanos , Fenofibrato/uso terapéutico , Lípidos , PPAR alfa , Estudios Prospectivos , SARS-CoV-2 , Resultado del TratamientoRESUMEN
Treatment with statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, has proven beneficial preventive effects on cardiovascular events. However, discontinuation due to intolerance and non-adherence remain two of the major gaps in both primary and secondary prevention. This leads many patients with high-risk of atherosclerotic cardiovascular disease (ASCVD) to be inadequately treated or not to achieve target lipid level goals, and as consequence they undergo an increased risk of cardiovascular events. The aim of this review is thus to give an overview of the reasons for discontinuation and on the possible mechanisms behind them. Although statins, as a class, are generally safe, they are associated with an increased risk of diabetes mellitus and hepatic transaminase elevations. Incidence of cataracts or cognitive dysfunction and others presented in the literature (e.g. proteinuria and haematuria) have been never confirmed to have a causal link. Conversely, debated remains the effect on myalgia. Muscle side effects are the most commonly reported, although myalgia is still believed by some to be the result of a nocebo/drucebo effect. Concerning mechanisms behind muscular side effects, no clear conclusions have been reached. Thus, if on one side it is important to identify individuals either at higher risk to develop a side effect, or with confirmed risk factors and conditions of statin intolerance, on the other side alternative strategies should be identified to avoid an increased ASCVD risk.
Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Mialgia/inducido químicamente , Mialgia/tratamiento farmacológico , Factores de Riesgo , Diabetes Mellitus/tratamiento farmacológico , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & controlRESUMEN
Vascular smooth muscle cells (VSMCs) are key participants in both early- and late-stage atherosclerosis and influence neighbouring cells possibly by means of bioactive molecules, some of which are packed into extracellular vesicles (EVs). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is expressed and secreted by VSMCs. This study aimed to unravel the role of PCSK9 on VSMCs-derived EVs in terms of content and functionality. EVs were isolated from human VSMCs overexpressing human PCSK9 (VSMCPCSK9-EVs) and tested on endothelial cells, monocytes, macrophages and in a model of zebrafish embryos. Compared to EVs released from wild-type VSMCs, VSMCPCSK9-EVs caused a rise in the expression of adhesion molecules in endothelial cells and of pro-inflammatory cytokines in monocytes. These acquired an increased migratory capacity, a reduced oxidative phosphorylation and secreted proteins involved in immune response and immune effector processes. Concerning macrophages, VSMCPCSK9-EVs enhanced inflammatory milieu and uptake of oxidized low-density lipoproteins, whereas the migratory capacity was reduced. When injected into zebrafish embryos, VSMCPCSK9-EVs favoured the recruitment of macrophages toward the site of injection. The results of the present study provide evidence that PCSK9 plays an inflammatory role by means of EVs, at least by those derived from smooth muscle cells of vascular origin.
Asunto(s)
Vesículas Extracelulares , Proproteína Convertasa 9 , Animales , Humanos , Proproteína Convertasa 9/metabolismo , Músculo Liso Vascular/metabolismo , Pez Cebra/metabolismo , Células Endoteliales/metabolismo , Miocitos del Músculo Liso/metabolismo , Vesículas Extracelulares/metabolismoRESUMEN
PURPOSE OF REVIEW: Since the clinical benefit of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors occurs in a setting of reducing low-density lipoprotein-cholesterol (LDL-C) to unprecedentedly low levels, it becomes of interest to investigate possible adverse effects pertaining to the risk of new-onset diabetes (NOD). RECENT FINDINGS: While safety results reported in either meta-analyses or cardiovascular outcome trials FOURIER (with evolocumab) and ODYSSEY (with alirocumab) did not rise the incidence of NOD, Mendelian randomization analyses were almost concordant in showing an increased risk of NOD. This evidence was in line with post-marketing safety reports highlighting that evolocumab and alirocumab were primarily related to mild hyperglycaemia rather than diabetes, with most of the hyperglycaemic events occurring during the first 6 months of treatment. Considering the different nature of genetic studies and of randomized controlled trials, with careful monitoring of patients, particularly in the earlier phases of treatment, and the identification of those more susceptible to develop NOD, treatment with PCSK9 inhibitors should be of minimal concern.
Asunto(s)
Anticolesterolemiantes , Enfermedades Cardiovasculares , Diabetes Mellitus , Humanos , Proproteína Convertasa 9/genética , Inhibidores de PCSK9 , Anticuerpos Monoclonales/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/epidemiología , Anticolesterolemiantes/efectos adversosRESUMEN
Immediate and aggressive lipid lowering therapies after acute coronary syndromes (ACS) and percutaneous coronary interventions (PCI) are supported by the ESC/EAS dyslipidemia guidelines, recommending the initiation of high-intensity statin therapy within the first 1-4 days of hospitalization. However, whether non statin lipid-lowering agents, added to statin treatment, could produce a further reduction in the risk of major adverse cardiovascular events (MACE) is still unknown. Thus, the efficacy of early treatment post-ACS with monoclonal antibodies (mAbs) anti PCSK9, evolocumab and alirocumab, is under investigation. The rationale to explore the rapid and aggressive pharmacological intervention with PCSK9 mAbs is supported by at least five confirmatory data in ACS: 1) circulating PCSK9 levels are raised during ACS 2) PCSK9 may stimulate platelet reactivity, this last being pivotal in the recurrence of ischemic events; 3) PCSK9 is associated with intraplaque inflammation, macrophage activation and endothelial dysfunction; 4) PCSK9 concentrations are associated with inflammation in the acute phase of ACS; and 5) statins raise PCSK9 levels promptly and, at times, dramatically. In this scenario, appropriate pharmacodynamic characteristics of anti PCSK9 therapies are a prerequisite for an effective response. Monoclonal antibodies act on circulating PCSK9 with a direct and rapid binding by blocking the interaction with the low-density lipoprotein receptor (LDLR). Evolocumab and alirocumab show a very rapid (within 4 h) and effective suppression of circulating unbound PCSK9 (- 95 % ÷ - 97 %). This inhibition results in a significant reduction of LDL-cholesterol (LDL-C) after 48 h (- 35 %) post injection with a full effect after 7-10 days (55-75 %). The complete and swift inhibitory action by evolocumab and alirocumab could have a potential clinical impact in ACS patients, also considering their potential inhibition of PCSK9 within the atherosclerotic plaque. Thus, administration of evolocumab or alirocumab is effective in lowering LDL-C levels in ACS, although the efficacy to prevent further cardiovascular (CV) events is still undetermined. The answer to this question will be provided by the ongoing clinical trials with evolocumab and alirocumab in ACS. In the present review we will discuss the pharmacological and biological rationale supporting the potential use of PCSK9 mAbs in ACS patients and the emerging evidence of evolocumab and alirocumab treatment in this clinical setting.
Asunto(s)
Síndrome Coronario Agudo , Anticolesterolemiantes , Antineoplásicos Inmunológicos , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Intervención Coronaria Percutánea , Síndrome Coronario Agudo/tratamiento farmacológico , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticolesterolemiantes/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , LDL-Colesterol , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Inflamación/tratamiento farmacológico , Proproteína Convertasa 9/metabolismo , Resultado del TratamientoRESUMEN
Background: Obesity and depression are intertwined diseases often associated with an increased risk of cardiovascular (CV) complications. Brain-Derived Neurotrophic Factor (BDNF), altered in the brain both of subjects with depression and obesity, provides a potential link between depression and thrombosis. Since the relationship among peripheral BDNF, depression and obesity is not well-defined, the aim of the present report has been to address this issue taking advantage of the contribution played by extracellular vesicle (EV)-derived miRNAs. Research Process: Associations among circulating BDNF, depression and EV-derived miRNAs related to atherothrombosis have been evaluated in a large Italian cohort of obese individuals (n = 743), characterized by the Beck Depression Inventory (BDI-II) score. Results: BDI-II was negatively associated with BDNF levels without a significant impact of the rs6265 BDNF polymorphism; this association was modified by raised levels of IFN-γ. BDNF levels were linked to an increase of 80 EV-derived miRNAs and a decrease of 59 miRNAs related to atherosclerosis and thrombosis. Network analysis identified at least 18 genes targeted by these miRNAs, 7 of which involved in depression and CV risk. The observation of a possible link among BDNF, depression, and miRNAs related to atherothrombosis and depression in obesity is novel and may lead to a wider use of BDNF as a CV risk biomarker in this specific subject group.
RESUMEN
Background: Obesity, especially severe obesity, is associated with a higher risk of atherosclerotic cardiovascular disease (ASCVD) morbidity and mortality. Bariatric surgery is a durable and effective weight loss therapy for patients with severe obesity and weight-related comorbidities. Elevated plasma levels of lipoprotein (a) (Lp(a)) are causally associated with ASCVD. The aim of this meta-analysis was to analyze whether bariatric surgery is associated with Lp(a) concentrations. Methods: A literature search in PubMed, Scopus, Embase, and Web of Science was performed from inception to May 1st, 2021. A random-effects model and the generic inverse variance weighting method were used to compensate for the heterogeneity of studies in terms of study design, treatment duration, and the characteristics of the studied populations. A random-effects metaregression model was used to explore the association with an estimated effect size. Evaluation of funnel plot, Begg's rank correlation, and Egger's weighted regression tests were used to assess the presence of publication bias in the meta-analysis. Results: Meta-analysis of 13 studies including 1551 patients showed a significant decrease of circulating Lp(a) after bariatric surgery (SMD: -0.438, 95% CI: -0.702, -0.174, p < 0.001, I 2: 94.05%). The results of the metaregression did not indicate any significant association between the changes in Lp(a) and duration of follow-up after surgery, reduction in body mass index, or baseline Lp(a) concentration. The reduction in circulating Lp(a) was robust in the leave-one-out sensitivity analysis. Conclusion: Bariatric surgery significantly decreases circulating Lp(a) concentrations. This decrease may have a positive effect on ASCVD in obese patients.
Asunto(s)
Aterosclerosis , Cirugía Bariátrica , Obesidad Mórbida , Humanos , Lipoproteína(a) , Obesidad , Pérdida de PesoRESUMEN
PURPOSE OF REVIEW: The aim of creating an orally active non-statin cholesterol-lowering drug was achieved with bempedoic acid, a small linear molecule providing both a significant low-density lipoprotein cholesterol (LDL-C) reduction and an anti-inflammatory effect by decreasing high-sensitivity C-reactive protein. Bempedoic acid antagonizes ATP citrate-lyase, a cytosolic enzyme upstream of HMGCoA reductase which is the rate-limiting step of cholesterol biosynthesis. Bempedoic acid is a pro-drug converted to its active metabolite by very-long-chain acyl-CoA synthetase 1 which is present mostly in the liver and absent in skeletal muscles. This limits the risk of myalgia and myopathy. The remit of this review is to give clinical insights on the safety and efficacy of bempedoic acid and to understand for whom it should be prescribed. RECENT FINDINGS: Bempedoic acid with a single daily dose (180 mg) reduces LDL-C by a mean 24.5% when given alone, by 18% when given on top of a major statin and by 38-40% when given in a fixed-dose combination with ezetimibe. Bempedoic acid does not lead to the risk of new-onset diabetes, and moderately improves the glycaemic profile. The extensive knowledge on bempedoic acid mechanism, metabolism and side effects has led to an improved understanding of the potential benefits of this agent and offers a possible alternative to cardiologists and clinical practitioners somewhat worn out today by the occurrence of the muscular side effects of statins.
Asunto(s)
Anticolesterolemiantes , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Anticolesterolemiantes/uso terapéutico , LDL-Colesterol , Ácidos Dicarboxílicos/uso terapéutico , Ácidos Grasos/uso terapéutico , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversosRESUMEN
There is currently growing attention being paid to the role of elevated triglycerides (TGs) as important mediators of residual atherosclerotic cardiovascular disease (ASCVD) risk. This role is supported by genetic studies and by the persistent residual risk of ASCVD, even after intensive statin therapy. Although TG lowering drugs have shown conflicting results when tested in cardiovascular outcome trials, data from the REDUCE-IT study with the ethyl ester of ω-3 eicosapentaenoic acid (EPA) have revived hope in this area of research. The aim of the present review is to critically discuss the most recent large trials with ω-3 fatty acids (FAs) trying to elucidate mechanistic and trial-related differences, as in the case of REDUCE-IT and STRENGTH studies. The ω-3 FAs may lower cardiovascular risk through a number of pleiotropic mechanisms, e.g., by lowering blood pressure, by mediating antithrombotic effects, by providing precursors for the synthesis of specialized proresolving mediators that can inhibit inflammation or by modulating the lipid rafts enriched in cholesterol and sphingolipids. In conclusion, in a field fraught with uncertainties, the ω-3 FAs and especially high dose icosapent ethyl (the ethyl ester of EPA) are at present a most valuable therapeutic option to reduce the ASCVD risk.
Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Ácidos Grasos Omega-3 , Aterosclerosis/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Ésteres/uso terapéutico , Ácidos Grasos Omega-3/uso terapéutico , Humanos , Factores de Riesgo , TriglicéridosRESUMEN
The cardiovascular benefit of statins is well established. However, only 20% of high-risk patients remain adequately adherent after 5 years of treatment. Among reasons for discontinuation, statin associated-muscle pain symptoms are the most prevalent. Aim of the present study was to evaluate the impact of high dose atorvastatin on skeletal muscle mitochondrial activity, aerobic and anaerobic exercise, and axonal excitability in a murine model of atherosclerosis. ApoE-/- mice were fed 12 weeks a high-fat high-cholesterol diet alone or containing atorvastatin (40 mg/Kg/day). Outcomes were the evaluation of muscle mitochondrial functionality, locomotion, grip test, and axonal excitability (compound action potential recording analysis of Aα motor propioceptive, Aß mechanoceptive and C nociceptive fibres). Atorvastatin led to a reduction in muscle mitochondrial biogenesis and mitochondrial ATP production. It did not affect muscular strength but led to a time-dependent motor impairment. Atorvastatin altered the responsiveness of mechanoceptive and nociceptive fibres, respectively, the Aß and C fibres. These findings point out to a mild sensitization on mechanical, tactile and pain sensitivity. In conclusion, although the prevalence of muscular side effects from statins may be overestimated, understanding of the underlying mechanisms can help improve the therapeutic approach and reassure adherence in patients needing-to-be-treated.
Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Musculares , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/farmacología , Atorvastatina/farmacología , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Locomoción , Ratones , Músculo Esquelético , Enfermedades Musculares/inducido químicamenteRESUMEN
PURPOSE OF THE REVIEW: High-density lipoproteins (HDL) are responsible for the transport in plasma of a large fraction of circulating lipids, in part from tissue mobilization. The evaluation of HDL-associated cholesterol (HDL-C) has provided a standard method for assessing cardiovascular (CV) risk, as supported by many contributions on the mechanism of this arterial benefit. The present review article will attempt to investigate novel findings on the role and mechanism of HDL in CV risk determination. RECENT FINDINGS: The most recent research has been aimed to the understanding of how a raised functional capacity of HDL, rather than elevated levels per se, may be responsible for the postulated CV protection. Markedly elevated HDL-C levels appear instead to be associated to a raised coronary risk, indicative of a U-shaped relationship. While HDL-C reduction is definitely related to a raised CV risk, HDL-C elevations may be linked to non-vascular diseases, such as age-related macular disease. The description of anti-inflammatory, anti-oxidative and anti-infectious properties has indicated potential newer areas for diagnostic and therapeutic approaches. In the last two decades inconclusive data have arisen from clinical trials attempting to increase HDL-C pharmacologically or by way of recombinant protein infusions (most frequently with the mutant A-I Milano); prevention of stent occlusion or heart failure treatment have shown instead significant promise. Targeted clinical studies are still ongoing.
Asunto(s)
Enfermedades Cardiovasculares , Lipoproteínas HDL , Enfermedades Cardiovasculares/prevención & control , HDL-Colesterol , HumanosRESUMEN
Dyslipidemia and cardiovascular complications are comorbidities of nonalcoholic fatty liver disease (NAFLD), which ranges from simple steatosis to nonalcoholic steatohepatitis, fibrosis, and cirrhosis up to hepatocellular carcinoma. Lipoprotein(a) (Lp(a)) has been associated with cardiovascular risk and metabolic abnormalities, but its impact on the severity of liver damage in patients with NAFLD remains to be clarified. Circulating Lp(a) levels were assessed in 600 patients with biopsy-proven NAFLD. The association of Lp(a) with liver damage was explored by categorizing serum Lp(a) into quartiles. The receiver operating characteristic curve was used to analyze the accuracy of serum Lp(a) in hepatic fibrosis prediction. Hepatic expression of lipoprotein A (LPA) and of genes involved in lipid metabolism and fibrogenic processes were evaluated by RNA sequencing in a subset of patients with NAFLD for whom Lp(a) dosage was available (n = 183). In patients with NAFLD, elevated Lp(a) levels were modestly associated with circulating lipids, carotid plaques, and hypertension (P < 0.05). Conversely, patients with low serum Lp(a) displayed insulin resistance (P < 0.05), transaminase elevation (P < 0.05), and increased risk of developing severe fibrosis (P = 0.007) and cirrhosis (P = 0.002). In addition, the diagnostic accuracy of Lp(a) in predicting fibrosis increased by combining it with transaminases (area under the curve fibrosis stage 4, 0.87; P < 0.0001). Hepatic LPA expression reflected serum Lp(a) levels (P = 0.018), and both were reduced with the progression of NAFLD (P < 0.05). Hepatic LPA messenger RNA levels correlated with those of genes involved in lipoprotein release, lipid synthesis, and fibrogenesis (P < 0.05). Finally, transmembrane 6 superfamily member 2 (TM6SF2) rs58542926, apolipoprotein E (ApoE) rs445925, and proprotein convertase subtilisin/kexin type 9 (PCSK9) rs7552841, known variants that modulate circulating lipids, may influence serum Lp(a) levels (P < 0.05). Conclusion: Circulating Lp(a) combined with transaminases may represent a novel noninvasive biomarker to predict advanced fibrosis in patients with NAFLD.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Fibrosis , Humanos , Lipoproteína(a) , Cirrosis Hepática/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Proproteína Convertasa 9 , TransaminasasRESUMEN
Dyslipidaemias and in particular elevated plasma low-density lipoprotein cholesterol (LDL-C) levels are major risk factors for atherosclerotic cardiovascular disease (ASCVD). Indeed, the more LDL-C is reduced the larger will be the ASCVD risk reduction. Although statins represent the first-line intervention to reduce the atherosclerotic burden driven by raised levels of LDL-C, adherence is not optimal and most patients do not follow guidelines and recommended doses. Thus, to achieve optimal LDL-C goals, especially in very high-risk patients, there is a need for new and safe agents, more tolerable than statins with low risk of myalgia. Thus, the present review will address the most recent clinical trials with bempedoic acid and inclisiran. Bempedoic acid is an oral drug acting at a biochemical step preceding hydroxymethylglutaryl-CoA reductase and not associated with muscular side effects. Inclisiran, the first-in-class small interfering RNA-based approach, has the ability to effectively reduce LDL-C by inhibiting the hepatic synthesis of proprotein convertase subtilisin/kexin type 9, with the advantage of requiring subcutaneous of a single dose on Day 1, Day 90, and every 6 months thereafter.
RESUMEN
Over the last 10 years, there have been advances on several aspects of lipoprotein(a) which are reviewed in the present article. Since the standard immunoassays for measuring lipoprotein(a) are not fully apo(a) isoform-insensitive, the application of an LC-MS/MS method for assaying molar concentrations of lipoprotein(a) has been advocated. Genome wide association, epidemiological, and clinical studies have established high lipoprotein(a) as a causal risk factor for atherosclerotic cardiovascular diseases (ASCVD). However, the relative importance of molar concentration, apo(a) isoform size or variants within the LPA gene is still controversial. Lipoprotein(a)-raising single nucleotide polymorphisms has not been shown to add on value in predicting ASCVD beyond lipoprotein(a) concentrations. Although hyperlipoproteinemia(a) represents an important confounder in the diagnosis of familial hypercholesterolemia (FH), it enhances the risk of ASCVD in these patients. Thus, identification of new cases of hyperlipoproteinemia(a) during cascade testing can increase the identification of high-risk individuals. However, it remains unclear whether FH itself increases lipoprotein(a). The ASCVD risk associated with lipoprotein(a) seems to follow a linear gradient across the distribution, regardless of racial subgroups and other risk factors. The inverse association with the risk of developing type 2 diabetes needs consideration as effective lipoprotein(a) lowering therapies are progressing towards the market. Considering that Mendelian randomization analyses have identified the degree of lipoprotein(a)-lowering that is required to achieve ASCVD benefit, the findings of the ongoing outcome trial with pelacarsen will clarify whether dramatically lowering lipoprotein(a) levels can reduce the risk of ASCVD.
Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Lipoproteína(a)/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Hipolipemiantes/uso terapéutico , Lipoproteína(a)/química , Factores de Riesgo , IncertidumbreRESUMEN
Inflammation is a marker of arterial disease stemming from cholesterol-dependent to -independent molecular mechanisms. In recent years, the role of inflammation in atherogenesis has been underpinned by pharmacological approaches targeting systemic inflammation that have led to a significant reduction in cardiovascular disease (CVD) risk. Although the use of nutraceuticals to prevent CVD has largely focused on lipid-lowering (e.g, red-yeast rice and omega-3 fatty acids), there is growing interest and need, especially now in the time of coronavirus pandemic, in the use of nutraceuticals to reduce inflammatory markers, and potentially the inflammatory CVD burden, however, there is still not enough evidence to confirm this. Indeed, diet is an important lifestyle determinant of health and can influence both systemic and vascular inflammation, to varying extents, according to the individual nutraceutical constituents. Thus, the aim of this Position Paper is to provide the first attempt at recommendations on the use of nutraceuticals with effective anti-inflammatory properties.