Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
3.
Nat Commun ; 14(1): 2683, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160917

RESUMEN

Many secretory enzymes acquire essential zinc ions (Zn2+) in the Golgi complex. ERp44, a chaperone operating in the early secretory pathway, also binds Zn2+ to regulate its client binding and release for the control of protein traffic and homeostasis. Notably, three membrane transporter complexes, ZnT4, ZnT5/ZnT6 and ZnT7, import Zn2+ into the Golgi lumen in exchange with protons. To identify their specific roles, we here perform quantitative Zn2+ imaging using super-resolution microscopy and Zn2+-probes targeted in specific Golgi subregions. Systematic ZnT-knockdowns reveal that ZnT4, ZnT5/ZnT6 and ZnT7 regulate labile Zn2+ concentration at the distal, medial, and proximal Golgi, respectively, consistent with their localization. Time-course imaging of cells undergoing synchronized secretory protein traffic and functional assays demonstrates that ZnT-mediated Zn2+ fluxes tune the localization, trafficking, and client-retrieval activity of ERp44. Altogether, this study provides deep mechanistic insights into how ZnTs control Zn2+ homeostasis and ERp44-mediated proteostasis along the early secretory pathway.


Asunto(s)
Aparato de Golgi , Proteostasis , Humanos , Homeostasis , Transporte Biológico , Bioensayo , Proteínas de la Membrana , Chaperonas Moleculares
4.
Cell Rep ; 42(1): 111899, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36586409

RESUMEN

Endoplasmic reticulum (ER) homeostasis requires molecular regulators that tailor mitochondrial bioenergetics to the needs of protein folding. For instance, calnexin maintains mitochondria metabolism and mitochondria-ER contacts (MERCs) through reactive oxygen species (ROS) from NADPH oxidase 4 (NOX4). However, induction of ER stress requires a quick molecular rewiring of mitochondria to adapt to new energy needs. This machinery is not characterized. We now show that the oxidoreductase ERO1⍺ covalently interacts with protein kinase RNA-like ER kinase (PERK) upon treatment with tunicamycin. The PERK-ERO1⍺ interaction requires the C-terminal active site of ERO1⍺ and cysteine 216 of PERK. Moreover, we show that the PERK-ERO1⍺ complex promotes oxidization of MERC proteins and controls mitochondrial dynamics. Using proteinaceous probes, we determined that these functions improve ER-mitochondria Ca2+ flux to maintain bioenergetics in both organelles, while limiting oxidative stress. Therefore, the PERK-ERO1⍺ complex is a key molecular machinery that allows quick metabolic adaptation to ER stress.


Asunto(s)
Mitocondrias , Oxidorreductasas , Oxidorreductasas/metabolismo , Mitocondrias/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Estrés Oxidativo
5.
Front Cell Dev Biol ; 10: 986997, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313580

RESUMEN

Upon progesterone stimulation, Endometrial Stromal Cells (EnSCs) undergo a differentiation program into secretory cells (decidualization) to release in abundance factors crucial for embryo implantation. We previously demonstrated that decidualization requires massive reshaping of the secretory pathway and, in particular, of the Golgi complex. To decipher the underlying mechanisms, we performed a time-course transcriptomic analysis of in vitro decidualizing EnSC. Pathway analysis shows that Gene Ontology terms associated with vesicular trafficking and early secretory pathway compartments are the most represented among those enriched for upregulated genes. Among these, we identified a cluster of co-regulated genes that share CREB3L1 and CREB3L2 binding elements in their promoter regions. Indeed, both CREB3L1 and CREB3L2 transcription factors are up-regulated during decidualization. Simultaneous downregulation of CREB3L1 and CREB3L2 impairs Golgi enlargement, and causes dramatic changes in decidualizing EnSC, including Golgi fragmentation, collagen accumulation in dilated Endoplasmic Reticulum cisternae, and overall decreased protein secretion. Thus, both CREB3L1 and CREB3L2 are required for Golgi reshaping and efficient protein secretion, and, as such, for successful decidualization.

6.
Redox Biol ; 55: 102410, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35863264

RESUMEN

Some aquaporins (AQPs) can transport H2O2 across membranes, allowing redox signals to proceed in and between cells. Unlike other peroxiporins, human AQP11 is an endoplasmic reticulum (ER)-resident that can conduit H2O2 to the cytosol. Here, we show that silencing Ero1α, an ER flavoenzyme that generates abundant H2O2 during oxidative folding, causes a paradoxical increase in luminal H2O2 levels. The simultaneous AQP11 downregulation prevents this increase, implying that H2O2 reaches the ER from an external source(s). Pharmacological inhibition of the electron transport chain reveals that Ero1α downregulation activates superoxide production by complex III. In the intermembrane space, superoxide dismutase 1 generates H2O2 that enters the ER channeled by AQP11. Meanwhile, the number of ER-mitochondria contact sites increases as well, irrespective of AQP11 expression. Taken together, our findings identify a novel interorganellar redox response that is activated upon Ero1α downregulation and transfers H2O2 from mitochondria to the ER via AQP11.

7.
EMBO J ; 41(3): e108518, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34957576

RESUMEN

Antibodies of the immunoglobulin M (IgM) class represent the frontline of humoral immune responses. They are secreted as planar polymers in which flanking µ2 L2 "monomeric" subunits are linked by two disulfide bonds, one formed by the penultimate cysteine (C575) in the tailpiece of secretory µ chains (µs tp) and the second by C414 in the Cµ3. The latter bond is not present in membrane IgM. Here, we show that C575 forms a non-native, intra-subunit disulfide bond as a key step in the biogenesis of secretory IgM. The abundance of this unexpected intermediate correlates with the onset and extent of polymerization. The rearrangement of the C-terminal tails into a native quaternary structure is guaranteed by the engagement of protein disulfide isomerase ERp44, which attacks the non-native C575 bonds. The resulting conformational changes promote polymerization and formation of C414 disulfide linkages. This unusual assembly pathway allows secretory polymers to form without the risk of disturbing the role of membrane IgM as part of the B cell antigen receptor.


Asunto(s)
Disulfuros/química , Inmunoglobulina M/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Células HEK293 , Humanos , Inmunoglobulina M/química
8.
Traffic ; 23(1): 4-20, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34651407

RESUMEN

Certain cell types must expand their exocytic pathway to guarantee efficiency and fidelity of protein secretion. A spectacular case is offered by decidualizing human endometrial stromal cells (EnSCs). In the midluteal phase of the menstrual cycle, progesterone stimulation induces proliferating EnSCs to differentiate into professional secretors releasing proteins essential for efficient blastocyst implantation. Here, we describe the architectural rearrangements of the secretory pathway of a human EnSC line (TERT-immortalized human endometrial stromal cells (T-HESC)). As in primary cells, decidualization entails proliferation arrest and the coordinated expansion of the entire secretory pathway without detectable activation of unfolded protein response (UPR) pathways. Decidualization proceeds also in the absence of ascorbic acid, an essential cofactor for collagen biogenesis, despite also the secretion of some proteins whose folding does not depend on vitamin C is impaired. However, even in these conditions, no overt UPR induction can be detected. Morphometric analyses reveal that the exocytic pathway does not increase relatively to the volume of the cell. Thus, differently from other cell types, abundant production is guaranteed by a coordinated increase of the cell size following arrest of proliferation.


Asunto(s)
Decidua , Endometrio , Decidua/metabolismo , Endometrio/metabolismo , Femenino , Humanos , Progesterona/metabolismo , Progesterona/farmacología , Vías Secretoras , Células del Estroma/metabolismo
9.
Transl Androl Urol ; 10(3): 1110-1120, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33850746

RESUMEN

BACKGROUND: Therapies available for late stage prostate cancer (PCa) patients are limited and mostly palliative. The necessary development of unexplored therapeutic options relies on a deeper knowledge of molecular mechanisms leading to cancer progression. Redox signals are known to modulate the intensity and duration of oncogenic circuits; cues originating from the endoplasmic reticulum (ER) and downstream exocytic organelles are relevant in secretory tumors, including PCa. Ero 1α is a master regulator of redox homeostasis and oxidative folding. METHODS: We assessed Ero 1α mRNA expression by bioinformatic analysis of three public datasets and protein expression levels in PCa cell lines representing different degrees of tumor progression and different human prostate specimens. Transient Ero 1α knockdown was achieved by RNA interference (siRNA). Consequences of Ero 1α downregulation were monitored by PCa proliferation, migration and invasion properties. RESULTS: Ero 1α mRNA and protein levels are upregulated in PCa cell lines compared to non-tumorigenic cells (P=0.0273). Ero 1α expression increases with the grade of malignancy, reaching the highest level in the androgen resistant PC3. In patients' samples from 3 datasets, Ero 1α mRNA expression correlates with pathological Gleason scores. Ero 1α knockdown inhibits proliferation (P=0.0081), migration (P=0.0085) and invasion (P=0.0007) of PC3 cells and alters the levels of integrin ß1 (P=0.0024). CONCLUSIONS: Results indicate that Ero 1α levels correlate with PCa aggressiveness; Ero 1α silencing inhibits key steps over the PCa metastatic process. Therefore, Ero 1α has the potential to be exploited as a novel biomarker and a therapeutic target in PCa.

10.
iScience ; 24(3): 102244, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33763635

RESUMEN

The composition of the secretome depends on the combined action of cargo receptors that facilitate protein transport and sequential checkpoints that restrict it to native conformers. Acting after endoplasmic reticulum (ER)-resident chaperones, ERp44 retrieves its clients from downstream compartments. To guarantee efficient quality control, ERp44 should exit the ER as rapidly as its clients, or more. Here, we show that appending ERp44 to different cargo proteins increases their secretion rates. ERp44 binds the cargo receptor ER-Golgi intermediate compartment (ERGIC)-53 in the ER to negotiate preferential loading into COPII vesicles. Silencing ERGIC-53, or competing for its COPII binding with 4-phenylbutyrate, causes secretion of Prdx4, an enzyme that relies on ERp44 for intracellular localization. In more acidic, zinc-rich downstream compartments, ERGIC-53 releases its clients and ERp44, which can bind and retrieve non-native conformers via KDEL receptors. By coupling the transport of cargoes and inspector proteins, cells ensure efficiency and fidelity of secretion.

11.
Trends Cell Biol ; 31(7): 529-541, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33685797

RESUMEN

The biosynthesis of about one third of the human proteome, including membrane receptors and secreted proteins, occurs in the endoplasmic reticulum (ER). Conditions that perturb ER homeostasis activate the unfolded protein response (UPR). An 'optimistic' UPR output aims at restoring homeostasis by reinforcement of machineries that guarantee efficiency and fidelity of protein biogenesis in the ER. Yet, once the UPR 'deems' that ER homeostatic readjustment fails, it transitions to a 'pessimistic' output, which, depending on the cell type, will result in apoptosis. In this article, we discuss emerging concepts on how the UPR 'evaluates' ER stress, how the UPR is repurposed, in particular in B cells, and how UPR-driven counter-selection of cells undergoing homeostatic failure serves organismal homeostasis and humoral immunity.


Asunto(s)
Retículo Endoplásmico , Inmunidad Humoral , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Homeostasis , Humanos , Respuesta de Proteína Desplegada
13.
J Cell Biol ; 219(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32725137

RESUMEN

Similar to other RNA viruses, SARS-CoV-2 must (1) enter a target/host cell, (2) reprogram it to ensure its replication, (3) exit the host cell, and (4) repeat this cycle for exponential growth. During the exit step, the virus hijacks the sophisticated machineries that host cells employ to correctly fold, assemble, and transport proteins along the exocytic pathway. Therefore, secretory pathway-mediated assemblage and excretion of infective particles represent appealing targets to reduce the efficacy of virus biogenesis, if not to block it completely. Here, we analyze and discuss the contribution of the molecular machines operating in the early secretory pathway in the biogenesis of SARS-CoV-2 and their relevance for potential antiviral targeting. The fact that these molecular machines are conserved throughout evolution, together with the redundancy and tissue specificity of their components, provides opportunities in the search for unique proteins essential for SARS-CoV-2 biology that could also be targeted with therapeutic objectives. Finally, we provide an overview of recent evidence implicating proteins of the early secretory pathway as potential antiviral targets with effective therapeutic applications.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Vías Secretoras/fisiología , Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Humanos , Pandemias , Neumonía Viral/tratamiento farmacológico , SARS-CoV-2 , Vías Secretoras/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología
14.
J Biol Chem ; 295(22): 7799-7811, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32332096

RESUMEN

Members of the interleukin (IL)-1 family are key determinants of inflammation. Despite their role as intercellular mediators, most lack the leader peptide typically required for protein secretion. This lack is a characteristic of dozens of other proteins that are actively and selectively secreted from living cells independently of the classical endoplasmic reticulum-Golgi exocytic route. These proteins, termed leaderless secretory proteins (LLSPs), comprise proteins directly or indirectly involved in inflammation, including cytokines such as IL-1ß and IL-18, growth factors such as fibroblast growth factor 2 (FGF2), redox enzymes such as thioredoxin, and proteins most expressed in the brain, some of which participate in the pathogenesis of neurodegenerative disorders. Despite much effort, motifs that promote LLSP secretion remain to be identified. In this review, we summarize the mechanisms and pathophysiological significance of the unconventional secretory pathways that cells use to release LLSPs. We place special emphasis on redox regulation and inflammation, with a focus on IL-1ß, which is secreted after processing of its biologically inactive precursor pro-IL-1ß in the cytosol. Although LLSP externalization remains poorly understood, some possible mechanisms have emerged. For example, a common feature of LLSP pathways is that they become more active in response to stress and that they involve several distinct excretion mechanisms, including direct plasma membrane translocation, lysosome exocytosis, exosome formation, membrane vesiculation, autophagy, and pyroptosis. Further investigations of unconventional secretory pathways for LLSP secretion may shed light on their evolution and could help advance therapeutic avenues for managing pathological conditions, such as diseases arising from inflammation.


Asunto(s)
Evolución Molecular , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Procesamiento Proteico-Postraduccional , Vías Secretoras , Animales , Autofagia , Exocitosis , Exosomas/genética , Exosomas/metabolismo , Exosomas/patología , Factor 2 de Crecimiento de Fibroblastos/genética , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Interleucina-18/genética , Interleucina-1beta/genética , Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/patología , Piroptosis
15.
Environ Microbiol ; 22(6): 1997-2000, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32342578

RESUMEN

The current SARS-CoV-2 pandemic is wreaking havoc throughout the world and has rapidly become a global health emergency. A central question concerning COVID-19 is why some individuals become sick and others not. Many have pointed already at variation in risk factors between individuals. However, the variable outcome of SARS-CoV-2 infections may, at least in part, be due also to differences between the viral subspecies with which individuals are infected. A more pertinent question is how we are to overcome the current pandemic. A vaccine against SARS-CoV-2 would offer significant relief, although vaccine developers have warned that design, testing and production of vaccines may take a year if not longer. Vaccines are based on a handful of different designs (i), but the earliest vaccines were based on the live, attenuated virus. As has been the case for other viruses during earlier pandemics, SARS-CoV-2 will mutate and may naturally attenuate over time (ii). What makes the current pandemic unique is that, thanks to state-of-the-art nucleic acid sequencing technologies, we can follow in detail how SARS-CoV-2 evolves while it spreads. We argue that knowledge of naturally emerging attenuated SARS-CoV-2 variants across the globe should be of key interest in our fight against the pandemic.


Asunto(s)
Betacoronavirus , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , COVID-19 , Infecciones por Coronavirus , Brotes de Enfermedades , Humanos , Pandemias , Neumonía Viral , SARS-CoV-2
16.
Redox Biol ; 28: 101326, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31546170

RESUMEN

Hydrogen peroxide (H2O2) is an essential second intracellular messenger. To reach its targets in the cytosol, H2O2 must cross a membrane, a feat that requires aquaporins (AQP) endowed with 'peroxiporin' activity (AQP3, AQP8, AQP9). Here, we exploit different organelle-targeted H2O2-sensitive probes to show that also AQP11 efficiently conduits H2O2. Unlike other peroxiporins, AQP11 is localized in the endoplasmic reticulum (ER), accumulating partly in mitochondrial-associated ER membranes (MAM). Its downregulation severely perturbs the flux of H2O2 through the ER, but not through the mitochondrial or plasma membranes. These properties make AQP11 a potential regulator of ER redox homeostasis and signaling.


Asunto(s)
Acuaporinas/genética , Acuaporinas/metabolismo , Retículo Endoplásmico/metabolismo , Peróxido de Hidrógeno/farmacocinética , Animales , Transporte Biológico , Células CHO , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Cricetulus , Regulación hacia Abajo , Células HEK293 , Células HeLa , Humanos
17.
Nat Commun ; 10(1): 4526, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31586057

RESUMEN

Genetically encoded probes monitoring H2O2 fluctuations in living organisms are key to decipher redox signaling events. Here we use a new probe, roGFP2-Tpx1.C169S, to monitor pre-toxic fluctuations of peroxides in fission yeast, where the concentrations linked to signaling or to toxicity have been established. This probe is able to detect nanomolar fluctuations of intracellular H2O2 caused by extracellular peroxides; expression of human aquaporin 8 channels H2O2 entry into fission yeast decreasing membrane gradients. The probe also detects H2O2 bursts from mitochondria after addition of electron transport chain inhibitors, the extent of probe oxidation being proportional to the mitochondrial activity. The oxidation of this probe is an indicator of steady-state levels of H2O2 in different genetic backgrounds. Metabolic reprogramming during growth in low-glucose media causes probe reduction due to the activation of antioxidant cascades. We demonstrate how peroxiredoxin-based probes can be used to monitor physiological H2O2 fluctuations.


Asunto(s)
Citosol/química , Peróxido de Hidrógeno/análisis , Técnicas de Sonda Molecular , Peroxirredoxinas/química , Membrana Celular/química , Genes Reporteros , Peróxido de Hidrógeno/química , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Mitocondrias/química , Sondas Moleculares/química , Oxidación-Reducción , Ingeniería de Proteínas , Schizosaccharomyces
18.
Kidney Int ; 96(4): 971-982, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31285081

RESUMEN

The clinical heterogeneity of idiopathic nephrotic syndrome in childhood may reflect different mechanisms of disease that are as yet unclear. Here, we evaluated the association between an atypical presence of IgM on the surface of T cells (T-cell IgM) and the response to steroid therapy in a total of 153 pediatric patients with idiopathic nephrotic syndrome in different phases of disease. At disease onset, T-cell IgM median levels were significantly elevated and predictive of risk of relapse in 47 patients. They were also significantly increased comparing 58 steroid-dependent to 8 infrequently relapsing and 14 frequently relapsing patients, especially during relapse, whereas they were within the normal range in 7 genetic steroid-resistant patients. T-cell IgM in vivo was not affected by the amount of total circulating IgM, nor by concomitant acute infections or oral immunosuppression. However, it was affected by rituximab treatment in 21 steroid-dependent patients. By in vitro experiments, elevated T-cell IgM was not influenced by total circulating IgM levels or by the presence of other circulating factors, and there was no distinctive antigen-specificity or atypical IgM polymerization. Rather, we found that increased T-cell IgM correlates with reduced IgM sialylation, which influences T-cell response to steroid inhibition and T-cell production of podocyte-damaging factors. Thus, the atypical presence of IgM on the surface of T cells may predispose a subset of steroid-sensitive pediatric patients with idiopathic nephrotic syndrome to a poor response to steroid therapy since disease onset.


Asunto(s)
Glucocorticoides/farmacología , Inmunoglobulina M/metabolismo , Síndrome Nefrótico/tratamiento farmacológico , Linfocitos T/inmunología , Adolescente , Niño , Preescolar , Resistencia a Medicamentos/genética , Quimioterapia Combinada/métodos , Femenino , Estudios de Seguimiento , Glucocorticoides/uso terapéutico , Humanos , Inmunoglobulina M/análisis , Inmunoglobulina M/inmunología , Lactante , Masculino , Síndrome Nefrótico/sangre , Síndrome Nefrótico/genética , Síndrome Nefrótico/inmunología , Podocitos , Estudios Prospectivos , Recurrencia , Rituximab/farmacología , Rituximab/uso terapéutico , Ácidos Siálicos/metabolismo , Linfocitos T/metabolismo , Resultado del Tratamiento
19.
Elife ; 82019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30869076

RESUMEN

How endoplasmic reticulum (ER) stress leads to cytotoxicity is ill-defined. Previously we showed that HeLa cells readjust homeostasis upon proteostatically driven ER stress, triggered by inducible bulk expression of secretory immunoglobulin M heavy chain (µs) thanks to the unfolded protein response (UPR; Bakunts et al., 2017). Here we show that conditions that prevent that an excess of the ER resident chaperone (and UPR target gene) BiP over µs is restored lead to µs-driven proteotoxicity, i.e. abrogation of HRD1-mediated ER-associated degradation (ERAD), or of the UPR, in particular the ATF6α branch. Such conditions are tolerated instead upon removal of the BiP-sequestering first constant domain (CH1) from µs. Thus, our data define proteostatic ER stress to be a specific consequence of inadequate BiP availability, which both the UPR and ERAD redeem.


Asunto(s)
Estrés del Retículo Endoplásmico , Células Epiteliales/fisiología , Proteínas de Choque Térmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Degradación Asociada con el Retículo Endoplásmico , Células HeLa , Humanos , Proteostasis , Respuesta de Proteína Desplegada
20.
Nat Commun ; 10(1): 603, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723194

RESUMEN

Zinc ions (Zn2+) are imported into the early secretory pathway by Golgi-resident transporters, but their handling and functions are not fully understood. Here, we show that Zn2+ binds with high affinity to the pH-sensitive chaperone ERp44, modulating its localization and ability to retrieve clients like Ero1α and ERAP1 to the endoplasmic reticulum (ER). Silencing the Zn2+ transporters that uptake Zn2+ into the Golgi led to ERp44 dysfunction and increased secretion of Ero1α and ERAP1. High-resolution crystal structures of Zn2+-bound ERp44 reveal that Zn2+ binds to a conserved histidine-cluster. The consequent large displacements of the regulatory C-terminal tail expose the substrate-binding surface and RDEL motif, ensuring client capture and retrieval. ERp44 also forms Zn2+-bridged homodimers, which dissociate upon client binding. Histidine mutations in the Zn2+-binding sites compromise ERp44 activity and localization. Our findings reveal a role of Zn2+ as a key regulator of protein quality control at the ER-Golgi interface.


Asunto(s)
Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Vías Secretoras , Zinc/metabolismo , Aminopeptidasas/metabolismo , Sitios de Unión/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Células Hep G2 , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Oxidorreductasas/metabolismo , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Control de Calidad , Interferencia de ARN , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA