Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35975975

RESUMEN

To clarify the determinants of agonist efficacy in pentameric ligand-gated ion channels, we examined a new compound, aminomethanesulfonic acid (AMS), a molecule intermediate in structure between glycine and taurine. Despite wide availability, to date there are no reports of AMS action on glycine receptors, perhaps because AMS is unstable at physiological pH. Here, we show that at pH 5, AMS is an efficacious agonist, eliciting in zebrafish α1 glycine receptors a maximum single-channel open probability of 0.85, much greater than that of ß-alanine (0.54) or taurine (0.12), and second only to that of glycine itself (0.96). Thermodynamic cycle analysis of the efficacy of these closely related agonists shows supra-additive interaction between changes in the length of the agonist molecule and the size of the anionic moiety. Single particle cryo-electron microscopy structures of AMS-bound glycine receptors show that the AMS-bound agonist pocket is as compact as with glycine, and three-dimensional classification demonstrates that the channel populates the open and the desensitized states, like glycine, but not the closed intermediate state associated with the weaker partial agonists, ß-alanine and taurine. Because AMS is on the cusp between full and partial agonists, it provides a new tool to help us understand agonist action in the pentameric superfamily of ligand-gated ion channels.


Asunto(s)
Receptores de Glicina , Pez Cebra , Animales , Microscopía por Crioelectrón , Glicina , Ácidos Sulfónicos , Taurina/farmacología , beta-Alanina/farmacología
2.
J Physiol ; 600(2): 333-347, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34802146

RESUMEN

Many pentameric ligand-gated ion channels are modulated by extracellular pH. Glycine receptors (GlyRs) share this property, but it is not well understood how they are affected by pH changes. Whole cell experiments on HEK293 cells expressing zebrafish homomeric α1 GlyR confirmed previous reports that acidic pH (6.4) reduces GlyR sensitivity to glycine, whereas alkaline pH (8.4) has small or negligible effects. In addition to that, at pH 6.4 we observed a reduction in the maximum responses to the partial agonists ß-alanine and taurine relative to the full agonist glycine. In cell-attached single-channel recording, low pH reduced agonist efficacy, as the maximum open probability decreased from 0.97, 0.91 and 0.66 to 0.93, 0.57 and 0.34 for glycine, ß-alanine and taurine, respectively, reflecting a threefold decrease in efficacy equilibrium constants for all three agonists. We also tested the effect of pH 6.4 in conditions that replicate those at the native synapse, recording outside-out currents elicited by fast application of millisecond pulses of agonists on α1 and α1ß GlyR, at a range of intracellular chloride concentrations. Acidic pH reduced the area under the curve of the currents, by reducing peak amplitude, slowing activation and speeding deactivation. Our results show that acidification of the extracellular pH by one unit, as may occur in pathological conditions such as ischaemia, impairs GlyR gating and is likely to reduce the effectiveness of glycinergic synaptic inhibition. KEY POINTS: Extracellular pH in the central nervous system (CNS) is known to shift towards acidic values during pathophysiological conditions such as ischaemia and seizures. Acidic extracellular pH is known to affect GABAergic inhibitory synapses, but its effect on signals mediated by glycine receptors (GlyR) is not well characterised. Moderate acidic conditions (pH 6.4) reduce the maximum single channel open probability of recombinant homomeric GlyRs produced by the neurotransmitter glycine or other agonists, such as ß-alanine and taurine. When glycine was applied with a piezoelectric stepper to outside out patches, to simulate its fast rise and short duration at the synapse, responses became shorter and smaller at pH 6.4. The effect was also observed with physiologically low intracellular chloride and in mammalian heteromeric GlyRs. This suggests that acidic pH is likely to reduce the strength of inhibitory signalling at glycinergic synapses.


Asunto(s)
Glicina , Receptores de Glicina , Ácidos , Animales , Glicina/farmacología , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Técnicas de Placa-Clamp , Ratas , Pez Cebra
3.
Br J Pharmacol ; 178 Suppl 1: S157-S245, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34529831

RESUMEN

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15539. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Canales Iónicos , Bases del Conocimiento , Ligandos , Receptores Acoplados a Proteínas G
4.
J Biol Chem ; 296: 100387, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33617876

RESUMEN

Like other pentameric ligand-gated channels, glycine receptors (GlyRs) contain long intracellular domains (ICDs) between transmembrane helices 3 and 4. Structurally characterized GlyRs are generally engineered to have a very short ICD. We show here that for one such construct, zebrafish GlyREM, the agonists glycine, ß-alanine, taurine, and GABA have high efficacy and produce maximum single-channel open probabilities greater than 0.9. In contrast, for full-length human α1 GlyR, taurine and GABA were clearly partial agonists, with maximum open probabilities of 0.46 and 0.09, respectively. We found that the elevated open probabilities in GlyREM are not due to the limited sequence differences between the human and zebrafish orthologs, but rather to replacement of the native ICD with a short tripeptide ICD. Consistent with this interpretation, shortening the ICD in the human GlyR increased the maximum open probability produced by taurine and GABA to 0.90 and 0.70, respectively, but further engineering it to resemble GlyREM (by introducing the zebrafish transmembrane helix 4 and C terminus) had no effect. Furthermore, reinstating the native ICD to GlyREM converted taurine and GABA to partial agonists, with maximum open probabilities of 0.66 and 0.40, respectively. Structural comparison of transmembrane helices 3 and 4 in short- and long-ICD GlyR subunits revealed that ICD shortening does not distort the orientation of these helices within each subunit. This suggests that the effects of shortening the ICD stem from removing a modulatory effect of the native ICD on GlyR gating, revealing a new role for the ICD in pentameric ligand-gated channels.


Asunto(s)
Glicina/farmacología , Receptores de Glicina/agonistas , Taurina/farmacología , beta-Alanina/farmacología , Ácido gamma-Aminobutírico/farmacología , Secuencia de Aminoácidos , Animales , Células Cultivadas , GABAérgicos/farmacología , Glicinérgicos/farmacología , Humanos , Técnicas de Placa-Clamp/métodos , Dominios Proteicos , Receptores de Glicina/metabolismo , Relación Estructura-Actividad , Pez Cebra
5.
J Physiol ; 598(16): 3417-3438, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32445491

RESUMEN

KEY POINTS: Loss-of-function mutations in proteins found at glycinergic synapses, most commonly in the α1 subunit of the glycine receptor (GlyR), cause the startle disease/hyperekplexia channelopathy in man. It was recently proposed that the receptors responsible are presynaptic homomeric GlyRs, rather than postsynaptic heteromeric GlyRs (which mediate glycinergic synaptic transmission), because heteromeric GlyRs are less affected by many startle mutations than homomers. We examined the α1 startle mutation S270T, at the extracellular end of the M2 transmembrane helix. Recombinant heteromeric GlyRs were less impaired than homomers by this mutation when we measured their response to equilibrium applications of glycine. However, currents elicited by synaptic-like millisecond applications of glycine to outside-out patches were much shorter (7- to 10-fold) in all mutant receptors, both homomeric and heteromeric. Thus, the synaptic function of heteromeric receptors is likely to be impaired by the mutation. ABSTRACT: Human startle disease is caused by mutations in glycine receptor (GlyR) subunits or in other proteins associated with glycinergic synapses. Many startle mutations are known, but it is hard to correlate the degree of impairment at molecular level with the severity of symptoms in patients. It was recently proposed that the disease is caused by disruption in the function of presynaptic homomeric GlyRs (rather than postsynaptic heteromeric GlyRs), because homomeric GlyRs are more sensitive to loss-of-function mutations than heteromers. Our patch-clamp recordings from heterologously expressed GlyRs characterised in detail the functional consequences of the α1S270T startle mutation, which is located at the extracellular end of the pore lining M2 transmembrane segment (18'). This mutation profoundly decreased the maximum single-channel open probability of homomeric GlyRs (to 0.16; cf. 0.99 for wild type) but reduced only marginally that of heteromeric GlyRs (0.96; cf. 0.99 for wild type). However, both heteromeric and homomeric mutant GlyRs became less sensitive to the neurotransmitter glycine. Responses evoked by brief, quasi-synaptic pulses of glycine onto outside-out patches were impaired in mutant receptors, as deactivation was approximately 10- and 7-fold faster for homomeric and heteromeric GlyRs, respectively. Our data suggest that the α1S270T mutation is likely to affect the opening step in GlyR activation. The faster decay of synaptic currents mediated by mutant heteromeric GlyRs is expected to reduce charge transfer at the synapse, despite the high equilibrium open probability of these mutant channels.


Asunto(s)
Hiperekplexia , Glicina , Humanos , Mutación , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Transmisión Sináptica
6.
Curr Opin Physiol ; 2: 19-26, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31231710

RESUMEN

Pentameric ligand-gated ion channels (pLGICs, also known as Cys-loop receptors) are a large family of ion channels expressed in all Bilateria and in several groups of bacteria and archaea. They are activated by small-molecule neurotransmitters to mediate fast transmission at many central and peripheral nervous system synapses and are the target of several drugs and insecticides. Here we review recent advances in the field, focussing on new insights on the structure of the agonist-binding site and on newly discovered protein-protein interactions involving pLGICs.

7.
J Biol Chem ; 292(12): 5031-5042, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28174298

RESUMEN

Glycine receptors (GlyR) belong to the pentameric ligand-gated ion channel (pLGIC) superfamily and mediate fast inhibitory transmission in the vertebrate CNS. Disruption of glycinergic transmission by inherited mutations produces startle disease in man. Many startle mutations are in GlyRs and provide useful clues to the function of the channel domains. E103K is one of few startle mutations found in the extracellular agonist binding site of the channel, in loop A of the principal side of the subunit interface. Homology modeling shows that the side chain of Glu-103 is close to that of Arg-131, in loop E of the complementary side of the binding site, and may form a salt bridge at the back of the binding site, constraining its size. We investigated this hypothesis in recombinant human α1 GlyR by site-directed mutagenesis and functional measurements of agonist efficacy and potency by whole cell patch clamp and single channel recording. Despite its position near the binding site, E103K causes hyperekplexia by impairing the efficacy of glycine, its ability to gate the channel once bound, which is very high in wild type GlyR. Mutating Glu-103 and Arg-131 caused various degrees of loss-of-function in the action of glycine, whereas mutations in Arg-131 enhanced the efficacy of the slightly bigger partial agonist sarcosine (N-methylglycine). The effects of the single charge-swapping mutations of these two residues were largely rescued in the double mutant, supporting the possibility that they interact via a salt bridge that normally constrains the efficacy of larger agonist molecules.


Asunto(s)
Hiperekplexia/genética , Mutación Puntual , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Glicina/metabolismo , Células HEK293 , Humanos , Hiperekplexia/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Receptores de Glicina/química , Sarcosina/metabolismo , Alineación de Secuencia
8.
PLoS One ; 11(9): e0163129, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27649498

RESUMEN

High throughput random mutagenesis is a powerful tool to identify which residues are important for the function of a protein, and gain insight into its structure-function relation. The human muscle nicotinic acetylcholine receptor was used to test whether this technique previously used for monomeric receptors can be applied to a pentameric ligand-gated ion channel. A mutant library for the α1 subunit of the channel was generated by error-prone PCR, and full length sequences of all 2816 mutants were retrieved using single molecule real time sequencing. Each α1 mutant was co-transfected with wildtype ß1, δ, and ε subunits, and the channel function characterized by an ion flux assay. To test whether the strategy could map the structure-function relation of this receptor, we attempted to identify mutations that conferred resistance to competitive antagonists. Mutant hits were defined as receptors that responded to the nicotinic agonist epibatidine, but were not inhibited by either α-bungarotoxin or tubocurarine. Eight α1 subunit mutant hits were identified, six of which contained mutations at position Y233 or V275 in the transmembrane domain. Three single point mutations (Y233N, Y233H, and V275M) were studied further, and found to enhance the potencies of five channel agonists tested. This suggests that the mutations made the channel resistant to the antagonists, not by impairing antagonist binding, but rather by producing a gain-of-function phenotype, e.g. increased agonist sensitivity. Our data show that random high throughput mutagenesis is applicable to multimeric proteins to discover novel functional mutants, and outlines the benefits of using single molecule real time sequencing with regards to quality control of the mutant library as well as downstream mutant data interpretation.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Músculos/metabolismo , Mutagénesis , Receptores Nicotínicos/genética , Secuencia de Aminoácidos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Bungarotoxinas/farmacología , Calcio/metabolismo , Células HEK293 , Humanos , Transporte Iónico/efectos de los fármacos , Mutación , Agonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/farmacología , Piridinas/farmacología , Receptores Nicotínicos/metabolismo , Homología de Secuencia de Aminoácido , Tubocurarina/farmacología
9.
Biophys J ; 111(2): 333-348, 2016 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-27463136

RESUMEN

The stochastic behavior of single ion channels is most often described as an aggregated continuous-time Markov process with discrete states. For ligand-gated channels each state can represent a different conformation of the channel protein or a different number of bound ligands. Single-channel recordings show only whether the channel is open or shut: states of equal conductance are aggregated, so transitions between them have to be inferred indirectly. The requirement to filter noise from the raw signal further complicates the modeling process, as it limits the time resolution of the data. The consequence of the reduced bandwidth is that openings or shuttings that are shorter than the resolution cannot be observed; these are known as missed events. Postulated models fitted using filtered data must therefore explicitly account for missed events to avoid bias in the estimation of rate parameters and therefore assess parameter identifiability accurately. In this article, we present the first, to our knowledge, Bayesian modeling of ion-channels with exact missed events correction. Bayesian analysis represents uncertain knowledge of the true value of model parameters by considering these parameters as random variables. This allows us to gain a full appreciation of parameter identifiability and uncertainty when estimating values for model parameters. However, Bayesian inference is particularly challenging in this context as the correction for missed events increases the computational complexity of the model likelihood. Nonetheless, we successfully implemented a two-step Markov chain Monte Carlo method that we called "BICME", which performs Bayesian inference in models of realistic complexity. The method is demonstrated on synthetic and real single-channel data from muscle nicotinic acetylcholine channels. We show that parameter uncertainty can be characterized more accurately than with maximum-likelihood methods. Our code for performing inference in these ion channel models is publicly available.


Asunto(s)
Canales Iónicos/metabolismo , Modelos Biológicos , Teorema de Bayes , Cadenas de Markov , Método de Montecarlo
10.
J Physiol ; 591(13): 3289-308, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23613537

RESUMEN

Glycine receptors mediate fast synaptic inhibition in spinal cord and brainstem. Two α subunits are present in adult neurones, α1, which forms most of the synaptic glycine receptors, and α3. The physiological role of α3 is not known, despite the fact that α3 expression is concentrated in areas involved in nociceptive processing, such as the superficial dorsal horn. In the present study, we characterized the kinetic properties of rat homomeric α3 glycine receptors heterologously expressed in HEK293 cells. We analysed steady state single channel activity at a range of different glycine concentrations by fitting kinetic schemes and found that α3 channels resemble α1 receptors in their high maximum open probability (99.1% cf. 98% for α1), but differ in that maximum open probability is reached when all five binding sites are occupied by glycine (cf. three out of five sites for α1). α3 activation was best described by kinetic schemes that allow the channel to open also when partially liganded and that contain more than the minimum number of shut states, either as desensitized distal states (Jones and Westbrook scheme) or as pre-open gating intermediates (flip scheme). We recorded also synaptic-like α3 currents elicited by the rapid application of 1 ms pulses of high concentration glycine to outside-out patches. These currents had fast deactivation, with a time constant of decay of 9 ms. Thus, if native synaptic currents can be mediated by α3 glycine receptors, they are likely to be very close in their kinetics to α1-mediated synaptic events.


Asunto(s)
Receptores de Glicina/fisiología , Animales , Sitios de Unión , Células HEK293 , Humanos , Cinética , Ratas , Transmisión Sináptica
11.
PLoS Biol ; 10(11): e1001429, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185134

RESUMEN

The modulation of pentameric ligand-gated ion channels (pLGICs) by divalent cations is believed to play an important role in their regulation in a physiological context. Ions such as calcium or zinc influence the activity of pLGIC neurotransmitter receptors by binding to their extracellular domain and either potentiate or inhibit channel activation. Here we have investigated by electrophysiology and X-ray crystallography the effect of divalent ions on ELIC, a close prokaryotic pLGIC homologue of known structure. We found that divalent cations inhibit the activation of ELIC by the agonist cysteamine, reducing both its potency and, at higher concentrations, its maximum response. Crystal structures of the channel in complex with barium reveal the presence of several distinct binding sites. By mutagenesis we confirmed that the site responsible for divalent inhibition is located at the outer rim of the extracellular domain, at the interface between adjacent subunits but at some distance from the agonist binding region. Here, divalent cations interact with the protein via carboxylate side-chains, and the site is similar in structure to calcium binding sites described in other proteins. There is evidence that other pLGICs may be regulated by divalent ions binding to a similar region, even though the interacting residues are not conserved within the family. Our study provides structural and functional insight into the allosteric regulation of ELIC and is of potential relevance for the entire family.


Asunto(s)
Cationes Bivalentes/química , Activación del Canal Iónico , Canales Iónicos Activados por Ligandos/antagonistas & inhibidores , Células Procariotas/química , Acetilcolina/química , Regulación Alostérica , Secuencia de Aminoácidos , Animales , Bario/química , Sitios de Unión , Calcio/química , Membrana Celular/química , Membrana Celular/fisiología , Clonación Molecular , Cristalografía por Rayos X , Cisteamina/química , Fenómenos Electrofisiológicos , Escherichia coli/química , Escherichia coli/genética , Células HEK293 , Humanos , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/fisiología , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp/métodos , Células Procariotas/fisiología , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Xenopus laevis/fisiología , Zinc/química
12.
J Neurosci ; 32(4): 1336-52, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22279218

RESUMEN

Loss-of-function mutations in human glycine receptors cause hyperekplexia, a rare inherited disease associated with an exaggerated startle response. We have studied a human disease mutation in the M2-M3 loop of the glycine receptor α1 subunit (K276E) using direct fitting of mechanisms to single-channel recordings with the program HJCFIT. Whole-cell recordings from HEK293 cells showed the mutation reduced the receptor glycine sensitivity. In single-channel recordings, rat homomeric α1 K276E receptors were barely active, even at 200 mM glycine. Coexpression of the ß subunit partially rescued channel function. Heteromeric mutant channels opened in brief bursts at 300 µM glycine (a concentration that is near-maximal for wild type) and reached a maximum one-channel open probability of about 45% at 100 mm glycine (compared to 96% for wild type). Distributions of apparent open times contained more than one component in high glycine and, therefore, could not be described by mechanisms with only one fully liganded open state. Fits to the data were much better with mechanisms in which opening can also occur from more than one fully liganded intermediate (e.g., "primed" models). Brief pulses of glycine (∼3 ms, 30 mM) applied to mutant channels in outside-out patches activated currents with a slower rise time (1.5 ms) than those of wild-type channels (0.2 ms) and a much faster decay. These features were predicted reasonably well by the mechanisms obtained from fitting single-channel data. Our results show that, by slowing and impairing channel gating, the K276E mutation facilitates the detection of closed reaction intermediates in the activation pathway of glycine channels.


Asunto(s)
Activación del Canal Iónico/genética , Mutación/fisiología , Receptores de Glicina/metabolismo , Reflejo Anormal/fisiología , Síndrome de la Persona Rígida/genética , Animales , Glicina/farmacología , Glicina/fisiología , Células HEK293 , Humanos , Ratas , Receptores de Glicina/genética , Reflejo de Sobresalto/fisiología , Transducción de Señal/genética
13.
J Neurosci ; 31(40): 14095-106, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21976494

RESUMEN

In the vertebrate CNS, fast synaptic inhibition is mediated by GABA and glycine receptors. We recently reported that the time course of these synaptic currents is slower when intracellular chloride is high. Here we extend these findings to measure the effects of both extracellular and intracellular chloride on the deactivation of glycine and GABA currents at both negative and positive holding potentials. Currents were elicited by fast agonist application to outside-out patches from HEK-293 cells expressing rat glycine or GABA receptors. The slowing effect of high extracellular chloride on current decay was detectable only in low intracellular chloride (4 mm). Our main finding is that glycine and GABA receptors "sense" chloride concentrations because of interactions between the M2 pore-lining domain and the permeating ions. This hypothesis is supported by the observation that the sensitivity of channel gating to intracellular chloride is abolished if the channel is engineered to become cation selective or if positive charges in the external pore vestibule are eliminated by mutagenesis. The appropriate interaction between permeating ions and channel pore is also necessary to maintain the channel voltage sensitivity of gating, which prolongs current decay at depolarized potentials. Voltage dependence is abolished by the same mutations that suppress the effect of intracellular chloride and also by replacing chloride with another permeant ion, thiocyanate. These observations suggest that permeant chloride affects gating by a foot-in-the-door effect, binding to a channel site with asymmetrical access from the intracellular and extracellular sides of the membrane.


Asunto(s)
Cloruros/fisiología , Agonistas del GABA/fisiología , Receptores de GABA/fisiología , Receptores de Glicina/fisiología , Animales , Cloruros/química , Líquido Extracelular/fisiología , Agonistas del GABA/química , Células HEK293 , Humanos , Líquido Intracelular/fisiología , Potenciales de la Membrana/fisiología , Modelos Neurológicos , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína/fisiología , Ratas , Receptores de GABA/química , Receptores de Glicina/química , Factores de Tiempo
14.
J Gen Physiol ; 137(2): 197-216, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21282399

RESUMEN

The α2 glycine receptor (GlyR) subunit, abundant in embryonic neurons, is replaced by α1 in the adult nervous system. The single-channel activity of homomeric α2 channels differs from that of α1-containing GlyRs, as even at the lowest glycine concentration (20 µM), openings occurred in long (>300-ms) groups with high open probability (P(open); 0.96; cell-attached recordings, HEK-expressed channels). Shut-time intervals within groups of openings were dominated by short shuttings of 5-10 µs. The lack of concentration dependence in the groups of openings suggests that they represent single activations, separated by very long shut times at low concentrations. Several putative mechanisms were fitted by maximizing the likelihood of the entire sequence of open and shut times, with exact missed-events allowance (program hjcfit). Records obtained at several glycine concentrations were fitted simultaneously. The adequacy of the different schemes was judged by the accuracy with which they predicted not only single-channel data but also the time course and concentration dependence of macroscopic responses elicited by rapid glycine applications to outside-out patches. The data were adequately described only with schemes incorporating a reaction intermediate in the activation, and the best was a flip mechanism with two binding sites and one open state. Fits with this mechanism showed that for α2 channels, the opening rate constant is very fast, ∼130,000 s(-1), much as for α1ß GlyRs (the receptor in mature synapses), but the estimated true mean open time is 20 times longer (around 3 ms). The efficacy for the flipping step and the binding affinity were lower for α2 than for α1ß channels, but the overall efficacies were similar. As we previously showed for α1 homomeric receptors, in α2 glycine channels, maximum P(open) is achieved when fewer than all five of the putative binding sites in the pentamer are occupied by glycine.


Asunto(s)
Receptores de Glicina/química , Receptores de Glicina/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Humanos , Activación del Canal Iónico/fisiología , Cinética , Funciones de Verosimilitud , Ratas , Receptores de Glicina/genética
15.
J Biol Chem ; 286(15): 13414-22, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21343294

RESUMEN

Single-channel conductance in Cys-loop channels is controlled by the nature of the amino acids in the narrowest parts of the ion conduction pathway, namely the second transmembrane domain (M2) and the intracellular helix. In cationic channels, such as Torpedo ACh nicotinic receptors, conductance is increased by negatively charged residues exposed to the extracellular vestibule. We now show that positively charged residues at the same loop 5 position boost also the conductance of anionic Cys-loop channels, such as glycine (α1 and α1ß) and GABA(A) (α1ß2γ2) receptors. Charge reversal mutations here produce a greater decrease on outward conductance, but their effect strongly depends on which subunit carries the mutation. In the glycine α1ß receptor, replacing Lys with Glu in α1 reduces single-channel conductance by 41%, but has no effect in the ß subunit. By expressing concatameric receptors with constrained stoichiometry, we show that this asymmetry is not explained by the subunit copy number. A similar pattern is observed in the α1ß2γ2 GABA(A) receptor, where only mutations in α1 or ß2 decreased conductance (to different extents). In both glycine and GABA receptors, the effect of mutations in different subunits does not sum linearly: mutations that had no detectable effect in isolation did enhance the effect of mutations carried by other subunits. As in the nicotinic receptor, charged residues in the extracellular vestibule of anionic Cys-loop channels influence elementary conductance. The size of this effect strongly depends on the direction of the ion flow and, unexpectedly, on the nature of the subunit that carries the residue.


Asunto(s)
Subunidades de Proteína/metabolismo , Receptores de GABA-A/metabolismo , Sustitución de Aminoácidos , Animales , Glicina , Células HEK293 , Humanos , Mutación Missense , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Receptores de GABA-A/genética , Xenopus laevis
16.
PLoS One ; 5(10): e13611, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-21049012

RESUMEN

BACKGROUND: The neuronal nicotinic receptors that mediate excitatory transmission in autonomic ganglia are thought to be formed mainly by the α3 and ß4 subunits. Expressing this composition in oocytes fails to reproduce the properties of ganglionic receptors, which may also incorporate the α5 and/or ß2 subunits. We compared the properties of human α3ß4 neuronal nicotinic receptors expressed in Human embryonic kidney cells (HEK293) and in Xenopus oocytes, to examine the effect of the expression system and α:ß subunit ratio. METHODOLOGY/PRINCIPAL FINDINGS: Two distinct channel forms were observed: these are likely to correspond to different stoichiometries of the receptor, with two or three copies of the α subunit, as reported for α4ß2 channels. This interpretation is supported by the pattern of change in acetylcholine (ACh) sensitivity observed when a hydrophilic Leu to Thr mutation was inserted in position 9' of the second transmembrane domain, as the effect of mutating the more abundant subunit is greater. Unlike α4ß2 channels, for α3ß4 receptors the putative two-α form is the predominant one in oocytes (at 1:1 α:ß cRNA ratio). This two-α form has a slightly higher ACh sensitivity (about 3-fold in oocytes), and displays potentiation by zinc. The putative three-α form is the predominant one in HEK cells transfected with a 1:1 α:ß DNA ratio or in oocytes at 9:1 α:ß RNA ratio, and is more sensitive to dimethylphenylpiperazinium (DMPP) than to ACh. In outside-out single-channel recordings, the putative two-α form opened to distinctive long bursts (100 ms or more) with low conductance (26 pS), whereas the three-α form gave rise to short bursts (14 ms) of high conductance (39 pS). CONCLUSIONS/SIGNIFICANCE: Like other neuronal nicotinic receptors, the α3ß4 receptor can exist in two different stoichiometries, depending on whether it is expressed in oocytes or in mammalian cell lines and on the ratio of subunits transfected.


Asunto(s)
Oocitos/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Línea Celular , Humanos , Técnicas de Placa-Clamp , Receptores Nicotínicos/química , Xenopus
17.
J Physiol ; 588(Pt 1): 45-58, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19770192

RESUMEN

Glycine receptors are, in several ways, the member of the nicotinic superfamily that is best-suited for single-channel recording. That means that they are ideal for testing ideas about how activation proceeds in a ligand-gated ion channel from the binding of the agonist to the opening of the channel. This review describes the quantitative characterization by single-channel analysis of a novel activation mechanism for the glycine receptor. The favourable properties of the glycine receptor allowed the first detection of a conformation change that follows the binding of the agonist but precedes the opening of the channel. We used the term 'flipping' to describe this pre-opening conformational change. The 'flipped' state has a binding affinity higher than the resting state, but lower than the open state. This increased affinity presumably reflects a structural change near the agonist binding site, possibly the 'capping' of the C-loop. The significance of the 'flip' activation mechanism goes beyond understanding the behaviour and the structure-function relation of glycine channels, as this mechanism can be applied also to other members of the superfamily, such as the muscle nicotinic receptor. The 'flip' mechanism has thrown light on the question of why partial agonists are not efficacious at keeping the channel open, a question that is fundamental to rational drug design. In both muscle nicotinic and glycine receptors, partial agonists are as good as full agonists at opening the channel once flipping has occurred, but are not as effective as full agonists in eliciting this early conformational change.


Asunto(s)
Activación del Canal Iónico/fisiología , Modelos Químicos , Modelos Neurológicos , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Ligandos , Conformación Proteica , Receptores de Glicina/ultraestructura , Relación Estructura-Actividad
18.
J Physiol ; 587(Pt 21): 5045-72, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19752108

RESUMEN

Choline has been used widely as an agonist for the investigation of gain-of-function mutants of the nicotinic acetylcholine receptor. It is useful because it behaves like a partial agonist. The efficacy of choline is difficult to measure because choline blocks the channel at concentrations about four times lower than those that activate it. We have fitted activation mechanisms to single-channel activity elicited from HEK-expressed human recombinant muscle nicotinic receptors by choline and by tetramethylammonium (TMA). Channel block by the agonist was incorporated into the mechanisms that were fitted, and block was found not to be selective for the open state. The results also suggest that channel block is very fast and that the channel can shut almost as fast as normal when the blocker was bound. Single-channel data are compatible with a mechanism in which choline is actually a full agonist, its maximum response being limited only by channel block. However, they are also compatible with a mechanism incorporating a pre-opening conformation change ('flip') in which choline is a genuine partial agonist. The latter explanation is favoured by concentration jump experiments, and by the fact that only this mechanism fits the TMA data. We propose that choline, like TMA, is a partial agonist because it is very ineffective (approximately 600-fold less than acetylcholine) at eliciting the initial, pre-opening conformation change. Once flipping has occurred, all agonists, even choline, open the channel with similar efficiency.


Asunto(s)
Colina/administración & dosificación , Activación del Canal Iónico/fisiología , Riñón/metabolismo , Músculo Esquelético/metabolismo , Compuestos de Amonio Cuaternario/administración & dosificación , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Activación del Canal Iónico/efectos de los fármacos , Riñón/efectos de los fármacos , Agonistas Nicotínicos/administración & dosificación , Antagonistas Nicotínicos/administración & dosificación
19.
J Neurosci ; 29(33): 10416-23, 2009 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-19692617

RESUMEN

The time-dependent integration of excitatory and inhibitory synaptic currents is an important process for shaping the input-output profiles of individual excitable cells, and therefore the activity of neuronal networks. Here, we show that the decay time course of GABAergic inhibitory synaptic currents is considerably faster when recorded with physiological internal Cl(-) concentrations than with symmetrical Cl(-) solutions. This effect of intracellular Cl(-) is due to a direct modulation of the GABA(A) receptor that is independent of the net direction of current flow through the ion channel. As a consequence, the time window during which GABAergic inhibition can counteract coincident excitatory inputs is much shorter, under physiological conditions, than that previously measured using high internal Cl(-). This is expected to have implications for neuronal network excitability and neurodevelopment, and for our understanding of pathological conditions, such as epilepsy and chronic pain, where intracellular Cl(-) concentrations can be altered.


Asunto(s)
Cloruros/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Líquido Intracelular/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Animales Recién Nacidos , Línea Celular , Humanos , Inhibición Neural/fisiología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
20.
J Neurosci ; 28(45): 11454-67, 2008 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-18987182

RESUMEN

The time course of currents mediated by native and recombinant glycine receptors was examined with a combination of rapid agonist applications to outside-out patches and single-channel recording. The deactivation time constant of currents evoked by brief, saturating pulses of glycine is profoundly affected by the chloride concentration on the intracellular side of the cell membrane. Deactivation was threefold slower when intracellular chloride was increased from a low level (10 mm), similar to that observed in living mature neurons, to 131 mm ("symmetrical" chloride, often used in pipette internal solutions). Single-channel analysis revealed that high chloride has its greatest effect on the channel closing rate, slowing it by a factor of 2 compared with the value we estimated in the cell-attached mode (in which the channels are at physiological intracellular chloride concentrations). The same effect of chloride was observed when glycinergic evoked synaptic currents were recorded from juvenile rat spinal motoneurons in vitro, because the decay time constant was reduced from approximately 7 ms to approximately 3 ms when cells were dialyzed with 10 mm chloride intracellular recording solution. Our results indicate that the time course of glycinergic synaptic inhibition in intact neurons is much faster than is estimated by measurements in symmetrical chloride and can be modulated by changes in intracellular chloride concentration in the range that can occur in physiological or pathological conditions.


Asunto(s)
Cloruros/metabolismo , Líquido Extracelular/metabolismo , Glicina/fisiología , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Anfotericina B/farmacología , Animales , Animales Recién Nacidos , Antibacterianos/farmacología , Línea Celular Transformada , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica/métodos , Glicina/farmacología , Gramicidina/farmacología , Humanos , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Activación del Canal Iónico/efectos de los fármacos , Cinética , Potenciales de la Membrana/efectos de los fármacos , Neuronas/citología , Técnicas de Placa-Clamp/métodos , Péptidos Cíclicos/farmacología , Ratas , Médula Espinal/citología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA