Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38636606

RESUMEN

BACKGROUND: IgE-mediated degranulation of mast cells (MCs) provides rapid protection against environmental hazards, including animal venoms. A fraction of tissue-resident MCs intimately associates with blood vessels. These perivascular MCs were reported to extend projections into the vessel lumen and to be the first MCs to acquire intravenously injected IgE, suggesting that IgE loading of MCs depends on their vascular association. OBJECTIVE: We sought to elucidate the molecular basis of the MC-blood vessel interaction and to determine its relevance for IgE-mediated immune responses. METHODS: We selectively inactivated the Itgb1 gene, encoding the ß1 chain of integrin adhesion molecules (ITGB1), in MCs by conditional gene targeting in mice. We analyzed skin MCs for blood vessel association, surface IgE density, and capability to bind circulating antibody specific for MC surface molecules, as well as in vivo responses to antigen administered via different routes. RESULTS: Lack of ITGB1 expression severely compromised MC-blood vessel association. ITGB1-deficient MCs showed normal densities of surface IgE but reduced binding of intravenously injected antibodies. While their capacity to degranulate in response to IgE ligation in vivo was unimpaired, anaphylactic responses to antigen circulating in the vasculature were largely abolished. CONCLUSIONS: ITGB1-mediated association of MCs with blood vessels is key for MC immune surveillance of blood vessel content, but is dispensable for slow steady-state loading of endogenous IgE onto tissue-resident MCs.

2.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38506714

RESUMEN

The extracellular matrix (ECM) serves as a scaffold for cells and plays an essential role in regulating numerous cellular processes, including cell migration and proliferation. Due to limitations in specimen preparation for conventional room-temperature electron microscopy, we lack structural knowledge on how ECM components are secreted, remodeled, and interact with surrounding cells. We have developed a 3D-ECM platform compatible with sample thinning by cryo-focused ion beam milling, the lift-out extraction procedure, and cryo-electron tomography. Our workflow implements cell-derived matrices (CDMs) grown on EM grids, resulting in a versatile tool closely mimicking ECM environments. This allows us to visualize ECM for the first time in its hydrated, native context. Our data reveal an intricate network of extracellular fibers, their positioning relative to matrix-secreting cells, and previously unresolved structural entities. Our workflow and results add to the structural atlas of the ECM, providing novel insights into its secretion and assembly.


Asunto(s)
Tomografía con Microscopio Electrónico , Matriz Extracelular , Transporte Biológico , Movimiento Celular , Citosol , Tomografía con Microscopio Electrónico/métodos , Matriz Extracelular/ultraestructura
3.
Front Cell Dev Biol ; 11: 1287420, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020899

RESUMEN

The intricate regulatory processes behind actin polymerization play a crucial role in cellular biology, including essential mechanisms such as cell migration or cell division. However, the self-organizing principles governing actin polymerization are still poorly understood. In this perspective article, we compare the Belousov-Zhabotinsky (BZ) reaction, a classic and well understood chemical oscillator known for its self-organizing spatiotemporal dynamics, with the excitable dynamics of polymerizing actin. While the BZ reaction originates from the domain of inorganic chemistry, it shares remarkable similarities with actin polymerization, including the characteristic propagating waves, which are influenced by geometry and external fields, and the emergent collective behavior. Starting with a general description of emerging patterns, we elaborate on single droplets or cell-level dynamics, the influence of geometric confinements and conclude with collective interactions. Comparing these two systems sheds light on the universal nature of self-organization principles in both living and inanimate systems.

4.
Sci Immunol ; 8(87): eadc9584, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37656776

RESUMEN

Immune responses rely on the rapid and coordinated migration of leukocytes. Whereas it is well established that single-cell migration is often guided by gradients of chemokines and other chemoattractants, it remains poorly understood how these gradients are generated, maintained, and modulated. By combining experimental data with theory on leukocyte chemotaxis guided by the G protein-coupled receptor (GPCR) CCR7, we demonstrate that in addition to its role as the sensory receptor that steers migration, CCR7 also acts as a generator and a modulator of chemotactic gradients. Upon exposure to the CCR7 ligand CCL19, dendritic cells (DCs) effectively internalize the receptor and ligand as part of the canonical GPCR desensitization response. We show that CCR7 internalization also acts as an effective sink for the chemoattractant, dynamically shaping the spatiotemporal distribution of the chemokine. This mechanism drives complex collective migration patterns, enabling DCs to create or sharpen chemotactic gradients. We further show that these self-generated gradients can sustain the long-range guidance of DCs, adapt collective migration patterns to the size and geometry of the environment, and provide a guidance cue for other comigrating cells. Such a dual role of CCR7 as a GPCR that both senses and consumes its ligand can thus provide a novel mode of cellular self-organization.


Asunto(s)
Leucocitos , Receptores CCR7 , Ligandos , Movimiento Celular
5.
Nat Commun ; 14(1): 5633, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704595

RESUMEN

Whether one considers swarming insects, flocking birds, or bacterial colonies, collective motion arises from the coordination of individuals and entails the adjustment of their respective velocities. In particular, in close confinements, such as those encountered by dense cell populations during development or regeneration, collective migration can only arise coordinately. Yet, how individuals unify their velocities is often not understood. Focusing on a finite number of cells in circular confinements, we identify waves of polymerizing actin that function as a pacemaker governing the speed of individual cells. We show that the onset of collective motion coincides with the synchronization of the wave nucleation frequencies across the population. Employing a simpler and more readily accessible mechanical model system of active spheres, we identify the synchronization of the individuals' internal oscillators as one of the essential requirements to reach the corresponding collective state. The mechanical 'toy' experiment illustrates that the global synchronous state is achieved by nearest neighbor coupling. We suggest by analogy that local coupling and the synchronization of actin waves are essential for the emergent, self-organized motion of cell collectives.


Asunto(s)
Actinas , Marcapaso Artificial , Humanos , Análisis por Conglomerados , Modelos Biológicos , Movimiento (Física)
6.
Nat Commun ; 14(1): 5644, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704612

RESUMEN

To navigate through diverse tissues, migrating cells must balance persistent self-propelled motion with adaptive behaviors to circumvent obstacles. We identify a curvature-sensing mechanism underlying obstacle evasion in immune-like cells. Specifically, we propose that actin polymerization at the advancing edge of migrating cells is inhibited by the curvature-sensitive BAR domain protein Snx33 in regions with inward plasma membrane curvature. The genetic perturbation of this machinery reduces the cells' capacity to evade obstructions combined with faster and more persistent cell migration in obstacle-free environments. Our results show how cells can read out their surface topography and utilize actin and plasma membrane biophysics to interpret their environment, allowing them to adaptively decide if they should move ahead or turn away. On the basis of our findings, we propose that the natural diversity of BAR domain proteins may allow cells to tune their curvature sensing machinery to match the shape characteristics in their environment.


Asunto(s)
Actinas , Adaptación Psicológica , Membrana Celular , Movimiento Celular , Biofisica
7.
Methods Mol Biol ; 2654: 137-147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37106180

RESUMEN

Imaging of the immunological synapse (IS) between dendritic cells (DCs) and T cells in suspension is hampered by suboptimal alignment of cell-cell contacts along the vertical imaging plane. This requires optical sectioning that often results in unsatisfactory resolution in time and space. Here, we present a workflow where DCs and T cells are confined between a layer of glass and polydimethylsiloxane (PDMS) that orients the cells along one, horizontal imaging plane, allowing for fast en-face-imaging of the DC-T cell IS.


Asunto(s)
Sinapsis Inmunológicas , Linfocitos T , Células Dendríticas , Activación de Linfocitos
9.
Nat Immunol ; 23(8): 1246-1255, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35817845

RESUMEN

Lymph nodes (LNs) comprise two main structural elements: fibroblastic reticular cells that form dedicated niches for immune cell interaction and capsular fibroblasts that build a shell around the organ. Immunological challenge causes LNs to increase more than tenfold in size within a few days. Here, we characterized the biomechanics of LN swelling on the cellular and organ scale. We identified lymphocyte trapping by influx and proliferation as drivers of an outward pressure force, causing fibroblastic reticular cells of the T-zone (TRCs) and their associated conduits to stretch. After an initial phase of relaxation, TRCs sensed the resulting strain through cell matrix adhesions, which coordinated local growth and remodeling of the stromal network. While the expanded TRC network readopted its typical configuration, a massive fibrotic reaction of the organ capsule set in and countered further organ expansion. Thus, different fibroblast populations mechanically control LN swelling in a multitier fashion.


Asunto(s)
Ganglios Linfáticos , Células del Estroma , Animales , Fibroblastos , Linfocitos , Ratones , Ratones Endogámicos C57BL
10.
J Cell Biol ; 221(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35856919

RESUMEN

Reading, interpreting and crawling along gradients of chemotactic cues is one of the most complex questions in cell biology. In this issue, Georgantzoglou et al. (2022. J. Cell. Biol.https://doi.org/10.1083/jcb.202103207) use in vivo models to map the temporal sequence of how neutrophils respond to an acutely arising gradient of chemoattractant.


Asunto(s)
Factores Quimiotácticos , Quimiotaxis , Neutrófilos , Factores Quimiotácticos/química , Neutrófilos/citología
11.
Elife ; 112022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35881547

RESUMEN

A key attribute of persistent or recurring bacterial infections is the ability of the pathogen to evade the host's immune response. Many Enterobacteriaceae express type 1 pili, a pre-adapted virulence trait, to invade host epithelial cells and establish persistent infections. However, the molecular mechanisms and strategies by which bacteria actively circumvent the immune response of the host remain poorly understood. Here, we identified CD14, the major co-receptor for lipopolysaccharide detection, on mouse dendritic cells (DCs) as a binding partner of FimH, the protein located at the tip of the type 1 pilus of Escherichia coli. The FimH amino acids involved in CD14 binding are highly conserved across pathogenic and non-pathogenic strains. Binding of the pathogenic strain CFT073 to CD14 reduced DC migration by overactivation of integrins and blunted expression of co-stimulatory molecules by overactivating the NFAT (nuclear factor of activated T-cells) pathway, both rate-limiting factors of T cell activation. This response was binary at the single-cell level, but averaged in larger populations exposed to both piliated and non-piliated pathogens, presumably via the exchange of immunomodulatory cytokines. While defining an active molecular mechanism of immune evasion by pathogens, the interaction between FimH and CD14 represents a potential target to interfere with persistent and recurrent infections, such as urinary tract infections or Crohn's disease.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Uropatógena , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/genética , Adhesinas de Escherichia coli/metabolismo , Animales , Infecciones por Escherichia coli/microbiología , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Inmunidad , Ratones , Escherichia coli Uropatógena/fisiología
12.
Dev Cell ; 57(1): 47-62.e9, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34919802

RESUMEN

When crawling through the body, leukocytes often traverse tissues that are densely packed with extracellular matrix and other cells, and this raises the question: How do leukocytes overcome compressive mechanical loads? Here, we show that the actin cortex of leukocytes is mechanoresponsive and that this responsiveness requires neither force sensing via the nucleus nor adhesive interactions with a substrate. Upon global compression of the cell body as well as local indentation of the plasma membrane, Wiskott-Aldrich syndrome protein (WASp) assembles into dot-like structures, providing activation platforms for Arp2/3 nucleated actin patches. These patches locally push against the external load, which can be obstructing collagen fibers or other cells, and thereby create space to facilitate forward locomotion. We show in vitro and in vivo that this WASp function is rate limiting for ameboid leukocyte migration in dense but not in loose environments and is required for trafficking through diverse tissues such as skin and lymph nodes.


Asunto(s)
Actinas/fisiología , Leucocitos/fisiología , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/fisiología , Proteína 3 Relacionada con la Actina/metabolismo , Actinas/metabolismo , Animales , Fenómenos Biomecánicos/fisiología , Línea Celular , Movimiento Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica/fisiología , Proteína del Síndrome de Wiskott-Aldrich/genética
13.
ACS Appl Mater Interfaces ; 13(30): 35545-35560, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34283577

RESUMEN

Attachment of adhesive molecules on cell culture surfaces to restrict cell adhesion to defined areas and shapes has been vital for the progress of in vitro research. In currently existing patterning methods, a combination of pattern properties such as stability, precision, specificity, high-throughput outcome, and spatiotemporal control is highly desirable but challenging to achieve. Here, we introduce a versatile and high-throughput covalent photoimmobilization technique, comprising a light-dose-dependent patterning step and a subsequent functionalization of the pattern via click chemistry. This two-step process is feasible on arbitrary surfaces and allows for generation of sustainable patterns and gradients. The method is validated in different biological systems by patterning adhesive ligands on cell-repellent surfaces, thereby constraining the growth and migration of cells to the designated areas. We then implement a sequential photopatterning approach by adding a second switchable patterning step, allowing for spatiotemporal control over two distinct surface patterns. As a proof of concept, we reconstruct the dynamics of the tip/stalk cell switch during angiogenesis. Our results show that the spatiotemporal control provided by our "sequential photopatterning" system is essential for mimicking dynamic biological processes and that our innovative approach has great potential for further applications in cell science.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Movimiento Celular/fisiología , Colorantes Fluorescentes/química , Neovascularización Fisiológica/fisiología , Animales , Adhesión Celular/fisiología , Línea Celular Tumoral , Química Clic , Reactivos de Enlaces Cruzados/química , Colorantes Fluorescentes/efectos de la radiación , Humanos , Proteínas Inmovilizadas/química , Ligandos , Ratones , Células 3T3 NIH , Péptidos/química , Prueba de Estudio Conceptual , Propiedades de Superficie , Pez Cebra
14.
Front Immunol ; 12: 630002, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717158

RESUMEN

Gradients of chemokines and growth factors guide migrating cells and morphogenetic processes. Migration of antigen-presenting dendritic cells from the interstitium into the lymphatic system is dependent on chemokine CCL21, which is secreted by endothelial cells of the lymphatic capillary, binds heparan sulfates and forms gradients decaying into the interstitium. Despite the importance of CCL21 gradients, and chemokine gradients in general, the mechanisms of gradient formation are unclear. Studies on fibroblast growth factors have shown that limited diffusion is crucial for gradient formation. Here, we used the mouse dermis as a model tissue to address the necessity of CCL21 anchoring to lymphatic capillary heparan sulfates in the formation of interstitial CCL21 gradients. Surprisingly, the absence of lymphatic endothelial heparan sulfates resulted only in a modest decrease of CCL21 levels at the lymphatic capillaries and did neither affect interstitial CCL21 gradient shape nor dendritic cell migration toward lymphatic capillaries. Thus, heparan sulfates at the level of the lymphatic endothelium are dispensable for the formation of a functional CCL21 gradient.


Asunto(s)
Quimiocina CCL21/metabolismo , Células Dendríticas/inmunología , Dermis/inmunología , Endotelio Linfático/inmunología , Heparitina Sulfato/metabolismo , Vasos Linfáticos/patología , Animales , Células Cultivadas , Quimiotaxis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CCR7/genética
15.
Dev Cell ; 56(6): 723-725, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33756118

RESUMEN

In this issue of Developmental Cell, Doyle and colleagues identify periodic anterior contraction as a characteristic feature of fibroblasts and mesenchymal cancer cells embedded in 3D collagen gels. This contractile mechanism generates a matrix prestrain required for crawling in fibrous 3D environments.


Asunto(s)
Colágeno , Fibroblastos , Geles , Humanos
16.
Curr Biol ; 31(10): 2051-2064.e8, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33711252

RESUMEN

Hematopoietic-specific protein 1 (Hem1) is an essential subunit of the WAVE regulatory complex (WRC) in immune cells. WRC is crucial for Arp2/3 complex activation and the protrusion of branched actin filament networks. Moreover, Hem1 loss of function in immune cells causes autoimmune diseases in humans. Here, we show that genetic removal of Hem1 in macrophages diminishes frequency and efficacy of phagocytosis as well as phagocytic cup formation in addition to defects in lamellipodial protrusion and migration. Moreover, Hem1-null macrophages displayed strong defects in cell adhesion despite unaltered podosome formation and concomitant extracellular matrix degradation. Specifically, dynamics of both adhesion and de-adhesion as well as concomitant phosphorylation of paxillin and focal adhesion kinase (FAK) were significantly compromised. Accordingly, disruption of WRC function in non-hematopoietic cells coincided with both defects in adhesion turnover and altered FAK and paxillin phosphorylation. Consistently, platelets exhibited reduced adhesion and diminished integrin αIIbß3 activation upon WRC removal. Interestingly, adhesion phenotypes, but not lamellipodia formation, were partially rescued by small molecule activation of FAK. A full rescue of the phenotype, including lamellipodia formation, required not only the presence of WRCs but also their binding to and activation by Rac. Collectively, our results uncover that WRC impacts on integrin-dependent processes in a FAK-dependent manner, controlling formation and dismantling of adhesions, relevant for properly grabbing onto extracellular surfaces and particles during cell edge expansion, like in migration or phagocytosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Adhesión Celular , Movimiento Celular , Integrinas/metabolismo , Macrófagos/metabolismo , Fagocitosis , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Quinasa 1 de Adhesión Focal/metabolismo , Masculino , Ratones , Paxillin/metabolismo , Fosforilación , Seudópodos
17.
J Cell Biol ; 220(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33533935

RESUMEN

Dendritic cells (DCs) are crucial for the priming of naive T cells and the initiation of adaptive immunity. Priming is initiated at a heterologous cell-cell contact, the immunological synapse (IS). While it is established that F-actin dynamics regulates signaling at the T cell side of the contact, little is known about the cytoskeletal contribution on the DC side. Here, we show that the DC actin cytoskeleton is decisive for the formation of a multifocal synaptic structure, which correlates with T cell priming efficiency. DC actin at the IS appears in transient foci that are dynamized by the WAVE regulatory complex (WRC). The absence of the WRC in DCs leads to stabilized contacts with T cells, caused by an increase in ICAM1-integrin-mediated cell-cell adhesion. This results in lower numbers of activated and proliferating T cells, demonstrating an important role for DC actin in the regulation of immune synapse functionality.


Asunto(s)
Actinas/inmunología , Comunicación Celular/inmunología , Células Dendríticas/inmunología , Sinapsis Inmunológicas/inmunología , Linfocitos T/inmunología , Actinas/genética , Animales , Adhesión Celular/genética , Adhesión Celular/inmunología , Comunicación Celular/genética , Proliferación Celular/genética , Femenino , Sinapsis Inmunológicas/genética , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/inmunología , Masculino , Ratones , Ratones Noqueados
18.
Sci Immunol ; 5(49)2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32646852

RESUMEN

The WAVE regulatory complex (WRC) is crucial for assembly of the peripheral branched actin network constituting one of the main drivers of eukaryotic cell migration. Here, we uncover an essential role of the hematopoietic-specific WRC component HEM1 for immune cell development. Germline-encoded HEM1 deficiency underlies an inborn error of immunity with systemic autoimmunity, at cellular level marked by WRC destabilization, reduced filamentous actin, and failure to assemble lamellipodia. Hem1-/- mice display systemic autoimmunity, phenocopying the human disease. In the absence of Hem1, B cells become deprived of extracellular stimuli necessary to maintain the strength of B cell receptor signaling at a level permissive for survival of non-autoreactive B cells. This shifts the balance of B cell fate choices toward autoreactive B cells and thus autoimmunity.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Autoinmunidad/inmunología , Linfocitos B/inmunología , Proteínas de la Membrana/inmunología , Animales , Enfermedades Autoinmunes/genética , Trasplante de Médula Ósea , Línea Celular , Niño , Citoesqueleto , Femenino , Humanos , Lactante , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/inmunología
19.
J Cell Biol ; 219(8)2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32699885
20.
EMBO J ; 39(17): e104238, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32667089

RESUMEN

Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine-tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re-organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin-sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Diferenciación Celular , Proliferación Celular , Citocininas/metabolismo , Microtúbulos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Animales , Arabidopsis/genética , Citocininas/genética , Microtúbulos/genética , Raíces de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA