Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Parasit Dis ; 48(3): 624-629, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39145365

RESUMEN

Trichomoniasis is a parasitic disease that affects the human reproductive and urinary systems, representing a substantial non-viral sexually transmitted infection worldwide. Given its impact on reproductive health, and the limited available information on the prevalence of Trichomonas vaginalis, this study aimed to evaluate the prevalence of T. vaginalis among women referred to health centers in Tabriz, Northwest Iran. Study was conducted on 448 suspicious women who attended to 29Bahman hospital in Tabriz, Northwest Iran, during September 2020 to September 2021. Demographic data were collected according to the study protocol. Vaginal discharges were obtained using sterile swabs, and the prevalence of T. vaginalis was determined using Papanicolauo staining and PCR method. Among the 448 cases studied, 48 (10.7%) samples were suspected as a T. vaginalis infection, while 4 (0.89%) confirmed using the PCR method. The mean age of infected individuals was 41.7 ± 9.4 years. No statistical correlation was observed between inflammation, method of contraception and infection (p = 0.8). The present study revealed a relatively low prevalence of T. vaginalis infection within the study population. Additionally, the utilization of the PCR method can be beneficial in confirming suspected samples.

2.
Iran J Parasitol ; 19(2): 140-152, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011532

RESUMEN

Background: Current study was designed to provide a better insight into the circulating genotypes, genetic diversity, and population structure of Echinococcus spp. between southeast of Iran and Pakistan. Methods: From Jun 2020 to Dec 2020, 46 hydatid cysts were taken from human (n: 6), camel (n: 10), goat (n: 10), cattle (n: 10) and sheep (n: 10) in various cities of Sistan and Baluchestan Province of Iran, located at the neighborhood of Pakistan. DNA samples were extracted, amplified, and subjected to sequence analysis of cox1 and nad1 genes. Results: The phylogeny inferred by the Maximum Likelihood algorithm indicated that G1 genotype (n: 19), G3 genotype (n: 14) and G6 genotype (n: 13) assigned into their specific clades. The diversity indices showed a moderate (nad1: Hd: 0.485) to high haplotype diversity (cox1: Hd: 0.867) of E. granulosus s.s. (G1/G3) and low nucleotide diversity. The negative value of Tajima's D and Fu's Fs test displayed deviation from neutrality indicating a recent population expansion. A parsimonious network of the haplotypes of cox1 displayed star-like features in the overall population containing IR9/PAK1/G1, IR2/PAK2/G3 and IR18/G6 as the most common haplotypes. A pairwise fixation index (Fst) indicated that E. granulosus s.s. populations are genetically moderate differentiated between southeast of Iran and Pakistan. The extension of haplotypes PAK18/G1 (sheep) and PAK26/G1 (cattle) toward Iranian haplogroup revealed that there is dawn of Echinococcus flow due to a transfer of alleles between mentioned populations through transport of livestock or their domestication. Conclusion: The current findings strengthen our knowledge concerning the evolutionary paradigms of E. granulosus in southeastern borders of Iran and is effective in controlling of hydatidosis.

3.
Vet Anim Sci ; 24: 100345, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38516388

RESUMEN

The larval stages of Echinococcus multilocularis (E. multilocularis) are what cause the zoonotic disease known as alveolar echinococcosis (AE). Identifying the antigens that trigger immune responses during infection is extremely important for the development of vaccines against Echinococcus infections. Several studies conducted in recent decades have described the specific traits of the protective antigens found in E. multilocularis and their role in immunizing different animal hosts. The objective of the current systematic review was to summarize the findings of relevant literature on this topic and unravel the most effective vaccine candidate antigens for future research. A comprehensive search was conducted across five databases, including ProQuest, PubMed, Scopus, ScienceDirect, and Web of Science, until March 1, 2023. Two reviewers autonomously conducted the screening and evaluation of data extraction and quality assessment. In the present study, a total of 41 papers matched the criteria for inclusion. The study findings indicate that the combination of Em14-3-3 and BCG is widely considered the most often employed antigens for E. multilocularis immunization. In addition, the study describes antigen delivery, measurement of immune responses, adjuvants, animal models, as well as routes and doses of vaccination. The research indicated that recombinant vaccines containing EMY162, EM95, and EmII/3-Em14-3-3 antigens and crude or purified antigens containing ribotan-formulated excretory/secretory antigens exhibited the most favorable outcomes and elicited protective immune responses.

4.
Indian J Med Res ; 158(4): 439-446, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38006347

RESUMEN

BACKGROUND OBJECTIVES: Acinetobacter baumannii has emerged as a nosocomial pathogen with a tendency of high antibiotic resistance and biofilm production. This study aimed to determine the occurrence of A. baumannii from different clinical specimens of suspected bacterial infections and furthermore to see the association of biofilm production with multidrug resistance and expression of virulence factor genes in A. baumannii. METHODS: A. baumannii was confirmed in clinical specimens by the detection of the blaOXA-51-like gene. Biofilm production was tested by microtitre plate assay and virulence genes were detected by real-time PCR. RESULTS: A. baumannii was isolated from a total of 307 clinical specimens. The isolate which showed the highest number of A. baumannii was an endotracheal tube specimen (44.95%), then sputum (19.54%), followed by pus (17.26%), urine (7.49%) and blood (5.86%), and <2 per cent from body fluids, catheter-tips and urogenital specimens. A resistance rate of 70-81.43 per cent against all antibiotics tested, except colistin and tigecycline, was noted, and 242 (78.82%) isolates were multidrug-resistant (MDR). Biofilm was detected in 205 (66.78%) with a distribution of 54.1 per cent weak, 10.42 per cent medium and 2.28 per cent strong biofilms. 71.07 per cent of MDR isolates produce biofilm (P<0.05). Amongst virulence factor genes, 281 (91.53%) outer membrane protein A (OmpA) and 98 (31.92%) biofilm-associated protein (Bap) were detected. Amongst 100 carbapenem-resistant A. baumannii, the blaOXA-23-like gene was predominant (96%), the blaOXA-58-like gene (6%) and none harboured the blaOXA-24-like gene. The metallo-ß-lactamase genes blaIMP-1 (4%) and blaVIM-1(8%) were detected, and 76 per cent showed the insertion sequence ISAba1. INTERPRETATION CONCLUSIONS: The majority of isolates studied were from lower respiratory tract specimens. The high MDR rate and its positive association with biofilm formation indicate the nosocomial distribution of A. baumannii. The biofilm formation and the presence of Bap were not interrelated, indicating that biofilm formation was not regulated by a single factor. The MDR rate and the presence of OmpA and Bap showed a positive association (P<0.05). The isolates co-harbouring different carbapenem resistance genes were the predominant biofilm producers, which will seriously limit the therapeutic options suggesting the need for strict antimicrobial stewardship and molecular surveillance in hospitals.


Asunto(s)
Acinetobacter baumannii , Infecciones Bacterianas , Infección Hospitalaria , Humanos , Virulencia/genética , Farmacorresistencia Bacteriana Múltiple/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , beta-Lactamasas/genética , Factores de Virulencia/genética , Biopelículas , Infección Hospitalaria/microbiología , Proteínas Bacterianas/genética , Pruebas de Sensibilidad Microbiana
5.
Sci Rep ; 13(1): 17394, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833301

RESUMEN

The NorA efflux pump of Staphylococcus aureus is known to play a major role in the development of resistance against quinolone drugs by reducing their concentration inside target pathogens. The objective of this study was to evaluate the ability of tannic acid to inhibit the gene expression of the NorA efflux pump in Staphylococcus aureus and to evaluate the in silico effect on the pump. Efflux pump inhibition was evaluated by fluorimetry. The checkerboard method evaluates the effect of the test substance in combination with an antimicrobial at different concentrations. To gene expression evaluation NorA the assay was performed using: a sub-inhibitory concentration preparation (MIC/4) of the antibiotic; a sub-inhibitory concentration preparation (MIC/4) of the antibiotic associated with tannic acid at a sub-inhibitory concentration (MIC/4). In this study, docking simulations were performed by the SWISSDOCK webserver. The ability of tannic acid to inhibit the NorA efflux pump can be related to both the ability to inhibit the gene expression of this protein, acting on signaling pathways involving the ArlRS membrane sensor. As well as acting directly through direct interaction with the NorA protein, as seen in the approach and in silico and in vitro per checkerboard method and fluorimetry of bromide accumulated in the cell.


Asunto(s)
Ciprofloxacina , Infecciones Estafilocócicas , Humanos , Ciprofloxacina/farmacología , Antibacterianos/farmacología , Antibacterianos/metabolismo , Staphylococcus aureus , Taninos/farmacología , Taninos/metabolismo , Expresión Génica , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Pruebas de Sensibilidad Microbiana
6.
Artículo en Inglés | MEDLINE | ID: mdl-37868204

RESUMEN

Background: Free radicals are very reactive molecules produced during oxidation events that in turn initiate a chain reaction resulting in cellular damage. Many degenerative diseases in humans, including cancer and central nervous system damage, are caused by free radicals. Scientific evidence indicates that active compounds from natural products can protect cells from free radical damage. As a result, the aim of this review is to provide evidence of the use of diverse Ethiopian medicinal plants with antioxidant properties that have been scientifically validated in order to draw attention and foster further investigations in this area. Methods: The keywords antioxidant, radical scavenging activities, reactive oxygen species, natural product, Ethiopian Medicinal plants, and 2, 2-Diphenyl-1-picrylhydrazyl radical scavenging assay (DPPH) were used to identify relevant data in the major electronic scientific databases, including Google Scholar, ScienceDirect, PubMed, Medline, and Science domain. All articles with descriptions that were accessed until November 2022 were included in the search strategy. Results: A total of 54 plant species from 33 families were identified, along with 46 compounds isolated. More scientific studies have been conducted on plant species from the Brassicaceae (19%), Asphodelaceae (12%), and Asteraceae (12%) families. The most used solvent and extraction method for plant samples are methanol (68%) and maceration (88%). The most examined plant parts were the leaves (42%). Plant extracts (56%) as well as isolated compounds (61%) exhibited significant antioxidant potential. The most effective plant extracts from Ethiopian flora were Bersama abyssinica, Solanecio gigas, Echinops kebericho, Verbascum sinaiticum, Apium leptophyllum, and Crinum abyssinicum. The best oxidative phytochemicals were Rutin (7), Flavan-3-ol-7-O-glucoside (8), Myricitrin (13), Myricetin-3-O-arabinopyranoside (14), 7-O-Methylaloeresin A (15), 3-Hydroxyisoagatholactone (17), ß-Sitosterol-3-O-ß-D-glucoside (22), Microdontin A/B (24), and Caffeic acid (39). Conclusion: Many crude extracts and compounds exhibited significant antioxidant activity, making them excellent candidates for the development of novel drugs. However, there is a paucity of research into the mechanisms of action as well as clinical evidence supporting some of these isolated compounds. To fully authenticate and then commercialize, further investigation and systematic analysis of these antioxidant-rich species are required.

7.
J Microbiol Immunol Infect ; 56(1): 150-162, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35864068

RESUMEN

BACKGROUND: Trichomonas vaginalis, a parasitic flagellated protozoan, is one of the main non-viral sexually transmitted diseases worldwide. Treatment options for trichomoniasis are limited to nitroimidazole compounds. However, resistance to these drugs has been reported, which requires the development of new anti-Trichomonas agents that confer suitable efficacy and less toxicity. METHODS: In the present work, we assessed the effectiveness of the liposomal system containing essential oils of Bunium persicum and Trachyspermum ammi against T. vaginalis in vitro. The chemical composition of B. persicum and T. ammi were analyzed using gas chromatography-mass spectrometry (GC-MS). Liposomal vesicles were prepared with phosphatidylcholine) 70%) and cholesterol)30%) using the thin-film method. The essential oils of B. persicum and T. ammi were loaded into the liposomes using the inactive loading method. Liposomal vesicles were made for two plants separately. Their physicochemical features were tested using Zeta-Sizer, AFM and SEM. The anti-Trichomonas activity was determined after 12 and 24 h of parasite cultures in TYI-S-33 medium. RESULTS: After 12 and 24 h of administration, the IC50 of the B. persicum essential oil nano-liposomes induced 14.41 µg/mL and 45.19 µg/mL, respectively. The IC50 of T. ammi essential oil nano-liposomes induced 8.08 µg/mL and 25.81 µg/mL, respectively. CONCLUSIONS: These data suggested that nano-liposomes of the essential oils of B. persicum and T. ammi may be a promising alternative to current treatments for Trichomonas infection.


Asunto(s)
Ammi , Apiaceae , Aceites Volátiles , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Apiaceae/química , Extractos Vegetales
8.
Toxicol Rep ; 9: 1013-1022, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518448

RESUMEN

The aims of this study to assess the efficiency of AGL against acetaminophen (APAP)-induced hepatic toxicity that was generated by mitochondrial oxidative stress and glutathione depletion. Free radical scavenging potentiality was analyzed by using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide, nitric oxide, and hydroxyl radical scavenging assays. APAP-induced liver toxicity was formed at a dose level of 640 mg/kg mg/kg BW each, p.o. for 14 days for all experimental rats except the vehicle control group. AGL (5 and 10 mg/kg) were treated orally with negative control and negative control silymarin (50 mg/kg) group. To assess the protective effect, we looked at the levels of serum biochemical markers, liver histoarchitecture, and hepatic antioxidant enzyme activity. AGL showed in vitro anti-oxidant potentialities by scavenging radicals in the respective assays. As evidenced by serum biochemical indicators and relative liver weight, AGL co-administration substantially reduced toxicant-induced hepatic damage. APAP-intoxication increased the malondialdehyde (MDA) level and declined in cellular endogenous antioxidant enzymes such as reduced catalase, superoxide dismutase, and glutathione, where, AGL treatment amended their level. In the same way, histopathological evaluation further verified that AGL protected the hepatocyte from APAP-induced damage. As AGL scavenges toxic free radicals, thereby protects mitochondria and other organelles from reactive oxygen and nitrogen species-mediated stress and its eventual consequence necrosis. Therefore, we propose the hepatoprotective activity of AGL through its antioxidant mechanism.

9.
Biomed Res Int ; 2022: 1440996, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909475

RESUMEN

Background: Efflux pumps are transmembrane proteins that expel drugs out of a bacterial cell contributing to microorganism drug resistance. Several studies addressing the use of natural products with medicinal properties have intensified given the above. Thus, the aim of the present study was to investigate the antibacterial activity and the O-eugenol potential in Staphylococcus aureus resistance reversal by efflux pump inhibition, as well as to evaluate its toxicity in the Drosophila melanogaster arthropod model. The broth microdilution method was used to determine the minimum inhibitory concentration (MIC) and the O-eugenol efflux pump inhibition. For the D. melanogaster toxicity assays, mortality and locomotor system damage were performed using the fumigation method. Results: O-eugenol presented a MIC of 1024 µg/mL against S. aureus. The association of this compound with the antibiotic tetracycline demonstrated a synergistic effect (p < 0.0001), this also being observed when the antibiotic was associated with ethidium bromide (p < 0.0001); thus, these results may be attributable to an efflux pump inhibition. The D. melanogaster mortality and geotaxis assays revealed the compound is toxic, with an EC50 of 18 µg/mL within 48 hours of exposure. Conclusions: While we can conclude that the tested product has an efflux pump inhibitory effect, further studies are needed to elucidate its mechanisms of action, in addition to assays using other strains to verify whether the substance has the same inhibitory effect.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Drosophila melanogaster/metabolismo , Eugenol/farmacología , Pruebas de Sensibilidad Microbiana , Modelos Animales , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Infecciones Estafilocócicas/tratamiento farmacológico
10.
Vet World ; 15(6): 1481-1488, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35993065

RESUMEN

Background and Aim: Lepidium meyenii Walp (Maca) is an herbaceous plant that grows in the Peruvian Andes and it has been widely used as a nutritional supplement and fertility enhancer and has been used in the treatment of a variety of diseases, such as rheumatism, respiratory disorders, and anemia. The most notable feature of Maca is its potent antioxidant capacity, which helps in the scavenging of free radicals and protection of cells from oxidative stress. This study aimed to evaluate the in vitro effect of Maca extract on thawed sperm cells from bulls. Materials and Methods: Three dilutions of 1, 10, and 100 mg/mL of Maca extract were incubated with frozen-thawed bovine semen and analyzed at 1, 3, and 24 h of exposure time, evaluating the activity of the extract on the DNA, motility, morphology, viability, integrity of the membrane and acrosome of spermatozoa. Results: The Maca extract improved the studied sperm parameters of motility, acrosome integrity, vitality, and DNA integrity of sperm cells at a concentration of 10 mg/mL, and at 1 mg/mL, an improvement was observed in the morphology and integrity of the membrane. However, the best activity of the Maca extract was observed on the DNA integrity of the sperm, which was effective at the three concentrations evaluated after 24 h of incubation. Conclusion: The results indicate that L. meyenii can help in maintaining spermatozoa cellular integrity after the frozen-thaw process, especially in the protection against DNA fragmentation. Therefore, Maca would be a feasible supplementation to protect sperm to maintain their fertile ability after thawing.

11.
Iran J Parasitol ; 17(2): 214-222, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032743

RESUMEN

Background: This study was conducted to determine the prevalence and intensity of nematode infections in sheep located in northeastern Iran from Apr 2018 to Mar 2019. Methods: Gastrointestinal nematodes of 300 sheep were inspected. The season of slaughter, anatomic location where the parasite was located, the animal's sex, infection prevalence and intensity were recorded. Seasonal differences in arrested larvae numbers also were assessed using Cochran's Q test. Results: Overall, 4,331 adult nematode specimens were collected. Among the examined sheep, 53% (159/300) were infected with one or more nematode species. Among infected sheep, 42.8% were infected with a single species of nematode, 26.4% were infected with two species of nematodes, and 30.8% were infected with three or more species of nematodes. Marshallagia marshalli (13.3%) was the most common nematode recovered from the abomasums of infected sheep, while Trichostrongylus vitrinus (4.6%) was commonly recovered from the small intestines, and Trichuris ovis (25.6%) was commonly recovered from the large intestines. In total, 463 arrested larvae were found in the abomasums of 7.5% of infected sheep and 104 arrested larvae were found in the small intestines of 8.8% of infected sheep. A significantly higher numbers of arrested larvae were found in summer compared to autumn (P<0.001). Conclusion: Intestinal parasites continue to be a problem for sheep in northeastern Iran and additional control measures need to be explored.

12.
Bioinorg Chem Appl ; 2022: 2260083, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35855788

RESUMEN

The present study reports the synthesis, characterization, and antibacterial properties of silver trimolybdate (Ag2Mo3O10.2H2O) nanorods. The synthesis was performed using a conventional hydrothermal method. The sample was characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-Vis-NIR diffuse reflectance, thermogravimetric analysis (TGA), and differential scanning calorimeter (DSC). The direct antibacterial activity was evaluated using the microdilution method to determine the minimum inhibitory concentration (MIC). To assess the ability of Ag2Mo3O10.2H2O nanorods to modulate antibacterial resistance, the MIC of aminoglycosides was established in the presence of a subinhibitory concentration of this substance alone and associated with LED light exposure. The characterization of the sample indicated that the synthesis of silver trimolybdate generated nanometric crystals with rod-like morphology, without secondary phases. The treatment with Ag2Mo3O10.2H2O nanorods alone or combined with visible LED lights exhibited clinically relevant antibacterial activity against both Gram-negative and Gram-positive bacteria. This nanostructure presented a variable antibiotic-modulating action, which was not improved by visible LED light exposure. Nevertheless, LED lights showed promising antibiotic-enhancing activities in the absence of Ag2Mo3O10.2H2O nanorods. In conclusion, silver trimolybdate dihydrate nanorods have antibacterial properties that can be photocatalysed by visible-light exposure. While showing the potential use to combat antibacterial resistance, the simultaneous combination of silver trimolybdate, visible LED lights, and antibacterial drugs should be carefully analysed to avoid antagonist effects that could impair the effectiveness of antibiotic therapy.

13.
Biomed Res Int ; 2022: 8217380, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663042

RESUMEN

The increasing rates of antimicrobial resistance have demanded the development of new drugs as conventional antibiotics have become significantly less effective. Evidence has identified a variety of phytocompounds with the potential to be used in the combat of infections caused by multidrug-resistant (MDR) bacteria. Considering the verification that terpenes are promising antibacterial compounds, the present research aimed to evaluate the antibacterial and antibiotic-modulating activity of (+)-α-pinene and (-)-borneol against MDR bacterial strains. The broth microdilution method was used to determine the minimum inhibitory concentration (MIC) of the compounds and antibiotics and further evaluate the intrinsic and associated antibiotic activity. These analyses revealed that (+)-α-pinene showed significant antibacterial activity only against E. coli (MIC = 512 µg.mL-1), while no significant inhibition of S. aureus and P. aeruginosa growth was observed (MIC ≥ 1024 µg mL-1). However, when combined with antibiotics, this compound induced a significant improvement in the activity of conventional antibiotics, as observed for ciprofloxacin, amikacin, and gentamicin against Staphylococcus aureus, as well as for amikacin and gentamicin against Escherichia coli, and amikacin against Pseudomonas aeruginosa. On the other hand, (-)-borneol was found to inhibit the growth of E. coli and enhance the antibiotic activity of ciprofloxacin and gentamicin against S. aureus. The present findings indicate that (+)-α-pinene and (-)-borneol are phytocompounds with the potential to be used in the combat of antibacterial resistance.


Asunto(s)
Antibacterianos , Staphylococcus aureus , Amicacina/farmacología , Antibacterianos/farmacología , Monoterpenos Bicíclicos , Canfanos , Ciprofloxacina/farmacología , Escherichia coli , Gentamicinas/farmacología , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa
14.
Front Med (Lausanne) ; 9: 825245, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602477

RESUMEN

The emergence of several novel SARS-CoV-2 variants regarded as variants of concern (VOCs) has exacerbated pathogenic and immunologic prominences, as well as reduced diagnostic sensitivity due to phenotype modification-capable mutations. Furthermore, latent and more virulent strains that have arisen as a result of unique mutations with increased evolutionary potential represent a threat to vaccine effectiveness in terms of incoming and existing variants. As a result, resisting natural immunity, which leads to higher reinfection rates, and avoiding vaccination-induced immunization, which leads to a lack of vaccine effectiveness, has become a crucial problem for public health around the world. This study attempts to review the genomic variation and pandemic impact of emerging variations of concern based on clinical characteristics management and immunization effectiveness. The goal of this study is to gain a better understanding of the link between genome level polymorphism, clinical symptom manifestation, and current vaccination in the instance of VOCs.

15.
Molecules ; 27(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35566105

RESUMEN

Cymbopogon winterianus, known as "citronella grass", is an important aromatic and medicinal tropical herbaceous plant. The essential oil of C. winterianus (EOCw) is popularly used to play an important role in improving human health due to its potential as a bioactive component. The present study aimed to identify the components of the essential oil of C. winterianus and verify its leishmanicidal and trypanocidal potential, as well as the cytotoxicity in mammalian cells, in vitro. The EOCw had geraniol (42.13%), citronellal (17.31%), and citronellol (16.91%) as major constituents. The essential oil only exhibited significant cytotoxicity in mammalian fibroblasts at concentrations greater than 250 µg/mL, while regarding antipromastigote and antiepimastigote activities, they presented values considered clinically relevant, since both had LC50 < 62.5 µg/mL. It can be concluded that this is a pioneer study on the potential of the essential oil of C. winterianus and its use against the parasites T. cruzi and L. brasiliensis, and its importance is also based on this fact. Additionally, according to the results, C. winterianus was effective in presenting values of clinical relevance and low toxicity and, therefore, an indicator of popular use.


Asunto(s)
Antiinfecciosos , Cymbopogon , Aceites Volátiles , Plantas Medicinales , Animales , Antiparasitarios/farmacología , Cromatografía de Gases , Cymbopogon/química , Humanos , Mamíferos , Aceites Volátiles/química , Aceites Volátiles/farmacología
16.
Molecules ; 27(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35630757

RESUMEN

One of the main global problems that affect human health is the development of bacterial resistance to different drugs. As a result, the growing number of multidrug-resistant pathogens has contributed to an increase in resistant infections and represents a public health problem. The present work seeks to investigate the chemical composition and antibacterial activity of the essential oil of Syzygium cumini leaves. To identify its chemical composition, gas chromatography coupled to mass spectrometry was used. The antibacterial activity test was performed with the standard strains Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 25853 and Staphylococcus aureus ATCC 25923 and multidrug-resistant clinical isolates E. coli 06, P. aeruginosa 24 and S. aureus 10. The minimum inhibitory concentration (MIC) was determined by serial microdilution as well as the verification of the modulating effect of the antibiotic effect. In this test, the oil was used in a subinhibitory concentration. The test reading was performed after 24 h of incubation at 37 °C. The results show that the major chemical constituent is α-pinene (53.21%). The oil showed moderate activity against E. coli ATCC 25922, with the MIC of 512 µg/mL; there was no activity against the other strains. The oil potentiated the effect of antibiotics demonstrating possible synergism when associated with gentamicin, erythromycin and norfloxacin against E. coli 06 and S. aureus 10.


Asunto(s)
Aceites Volátiles , Syzygium , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli , Cromatografía de Gases y Espectrometría de Masas , Humanos , Aceites Volátiles/química , Aceites Volátiles/farmacología , Fitoquímicos/farmacología , Pseudomonas aeruginosa , Staphylococcus aureus
17.
Pharmaceutics ; 14(4)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35456532

RESUMEN

(1) Background: Candida is a genus of yeasts with notable pathogenicity and significant ability to develop antimicrobial resistance. Gossypium hirsutum L., a medicinal plant that is traditionally used due to its antimicrobial properties, has demonstrated significant antifungal activity. Therefore, this study investigated the chemical composition and anti-Candida effects of aqueous (AELG) and hydroethanolic (HELG) extracts obtained from the leaves of this plant. (2) Methods: The extracts were chemically characterized by UPLC-QTOF-MS/MS, and their anti-Candida activities were investigated by analyzing cell viability, biofilm production, morphological transition, and enhancement of antifungal resistance. (3) Results: The UPLC-QTOF-MS/MS analysis revealed the presence of twenty-one compounds in both AELG and HELG, highlighting the predominance of flavonoids. The combination of the extracts with fluconazole significantly reduced its IC50 values against Candida albicans INCQS 40006, Candida tropicalis INCQS 40042, and C. tropicalis URM 4262 strains, indicating enhanced antifungal activity. About biofilm production, significant inhibition was observed only for the AELG-treated C. tropicalis URM 4262 strain in comparison with the untreated control. Accordingly, this extract showed more significant inhibitory effects on the morphological transition of the INCQS 40006 and URM 4387 strains of C. albicans (4) Conclusions: Gossypium hirsutum L. presents promising antifungal effects, that may be potentially linked to the combined activity of chemical constituents identified in its extracts.

18.
Virulence ; 13(1): 609-633, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35363588

RESUMEN

Marburg virus (MARV) has been a major concern since 1967, with two major outbreaks occurring in 1998 and 2004. Infection from MARV results in severe hemorrhagic fever, causing organ dysfunction and death. Exposure to fruit bats in caves and mines, and human-to-human transmission had major roles in the amplification of MARV outbreaks in African countries. The high fatality rate of up to 90% demands the broad study of MARV diseases (MVD) that correspond with MARV infection. Since large outbreaks are rare for MARV, clinical investigations are often inadequate for providing the substantial data necessary to determine the treatment of MARV disease. Therefore, an overall review may contribute to minimizing the limitations associated with future medical research and improve the clinical management of MVD. In this review, we sought to analyze and amalgamate significant information regarding MARV disease epidemics, pathophysiology, and management approaches to provide a better understanding of this deadly virus and the associated infection.


Asunto(s)
Quirópteros , Enfermedad del Virus de Marburg , Marburgvirus , Animales , Modelos Animales de Enfermedad , Humanos , Enfermedad del Virus de Marburg/epidemiología , Marburgvirus/fisiología , Virulencia
19.
Molecules ; 27(7)2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35408565

RESUMEN

Weeds are an important source of natural products; with promising biological activity. This study investigated the anti-kinetoplastida potential (in vitro) to evaluate the cytotoxicity (in vitro) and antioxidant capacity of the essential oil of Rhaphiodon echinus (EORe), which is an infesting plant species. The essential oil was analyzed by GC/MS. The antioxidant capacity was evaluated by reduction of the DPPH radical and Fe3+ ion. The clone Trypanosoma cruzi CL-B5 was used to search for anti-epimastigote activity. Antileishmanial activity was determined using promastigotes of Leishmania braziliensis (MHOM/CW/88/UA301). NCTC 929 fibroblasts were used for the cytotoxicity test. The results showed that the main constituent of the essential oil was γ-elemene. No relevant effect was observed concerning the ability to reduce the DPPH radical; only at the concentration of 480 µg/mL did the essential oil demonstrate a high reduction of Fe3+ power. The oil was active against L. brasiliensis promastigotes; but not against the epimastigote form of T. cruzi. Cytotoxicity for mammalian cells was low at the active concentration capable of killing more than 70% of promastigote forms. The results revealed that the essential oil of R. echinus showed activity against L. brasiliensis; positioning itself as a promising agent for antileishmanial therapies.


Asunto(s)
Antiprotozoarios , Enfermedad de Chagas , Lamiaceae , Leishmaniasis Mucocutánea , Aceites Volátiles , Trypanosoma cruzi , Animales , Antioxidantes/farmacología , Antiprotozoarios/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Mamíferos , Aceites Volátiles/farmacología
20.
Molecules ; 27(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35408618

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic is still ongoing, with no signs of abatement in sight. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of this pandemic and has claimed over 5 million lives, is still mutating, resulting in numerous variants. One of the newest variants is Omicron, which shows an increase in its transmissibility, but also reportedly reduces hospitalization rates and shows milder symptoms, such as in those who have been vaccinated. As a result, many believe that Omicron provides a natural vaccination, which is the first step toward ending the COVID-19 pandemic. Based on published research and scientific evidence, we review and discuss how the end of this pandemic is predicted to occur as a result of Omicron variants being surpassed in the community. In light of the findings of our research, we believe that it is most likely true that the Omicron variant is a natural way of vaccinating the masses and slowing the spread of this deadly pandemic. While the mutation that causes the Omicron variant is encouraging, subsequent mutations do not guarantee that the disease it causes will be less severe. As the virus continues to evolve, humans must constantly adapt by increasing their immunity through vaccination.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Humanos , Inmunidad Innata , Pandemias , SARS-CoV-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...