Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Heliyon ; 10(4): e26414, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38390107

RESUMEN

Early cancer detection, guided by whole-body imaging, is important for the overall survival and well-being of the patients. While various computer-assisted systems have been developed to expedite and enhance cancer diagnostics and longitudinal monitoring, the detection and segmentation of tumors, especially from whole-body scans, remain challenging. To address this, we propose a novel end-to-end automated framework that first generates a tumor probability distribution map (TPDM), incorporating prior information about the tumor characteristics (e.g. size, shape, location). Subsequently, the TPDM is integrated with a state-of-the-art 3D segmentation network along with the original PET/CT or PET/MR images. This aims to produce more meaningful tumor segmentation masks compared to using the baseline 3D segmentation network alone. The proposed method was evaluated on three independent cohorts (autoPET, CAR-T, cHL) of images containing different cancer forms, obtained with different imaging modalities, and acquisition parameters and lesions annotated by different experts. The evaluation demonstrated the superiority of our proposed method over the baseline model by significant margins in terms of Dice coefficient, and lesion-wise sensitivity and precision. Many of the extremely small tumor lesions (i.e. the most difficult to segment) were missed by the baseline model but detected by the proposed model without additional false positives, resulting in clinically more relevant assessments. On average, an improvement of 0.0251 (autoPET), 0.144 (CAR-T), and 0.0528 (cHL) in overall Dice was observed. In conclusion, the proposed TPDM-based approach can be integrated with any state-of-the-art 3D UNET with potentially more accurate and robust segmentation results.

2.
Cancer Imaging ; 23(1): 87, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710346

RESUMEN

BACKGROUND: Statistical atlases can provide population-based descriptions of healthy volunteers and/or patients and can be used for region- and voxel-based analysis. This work aims to develop whole-body diffusion atlases of healthy volunteers scanned at 1.5T and 3T. Further aims include evaluating the atlases by establishing whole-body Apparent Diffusion Coefficient (ADC) values of healthy tissues and including healthy tissue deviations in an automated tumour segmentation task. METHODS: Multi-station whole-body Diffusion Weighted Imaging (DWI) and water-fat Magnetic Resonance Imaging (MRI) of healthy volunteers (n = 45) were acquired at 1.5T (n = 38) and/or 3T (n = 29), with test-retest imaging for five subjects per scanner. Using deformable image registration, whole-body MRI data was registered and composed into normal atlases. Healthy tissue ADCmean was manually measured for ten tissues, with test-retest percentage Repeatability Coefficient (%RC), and effect of age, sex and scanner assessed. Voxel-wise whole-body analyses using the normal atlases were studied with ADC correlation analyses and an automated tumour segmentation task. For the latter, lymphoma patient MRI scans (n = 40) with and without information about healthy tissue deviations were entered into a 3D U-Net architecture. RESULTS: Sex- and Body Mass Index (BMI)-stratified whole-body high b-value DWI and ADC normal atlases were created at 1.5T and 3T. %RC of healthy tissue ADCmean varied depending on tissue assessed (4-48% at 1.5T, 6-70% at 3T). Scanner differences in ADCmean were visualised in Bland-Altman analyses of dually scanned subjects. Sex differences were measurable for liver, muscle and bone at 1.5T, and muscle at 3T. Volume of Interest (VOI)-based multiple linear regression, and voxel-based correlations in normal atlas space, showed that age and ADC were negatively associated for liver and bone at 1.5T, and positively associated with brain tissue at 1.5T and 3T. Adding voxel-wise information about healthy tissue deviations in an automated tumour segmentation task gave numerical improvements in the segmentation metrics Dice score, sensitivity and precision. CONCLUSIONS: Whole-body DWI and ADC normal atlases were created at 1.5T and 3T, and applied in whole-body voxel-wise analyses.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen por Resonancia Magnética , Humanos , Femenino , Masculino , Imagen de Cuerpo Entero , Hígado , Benchmarking
4.
Cancer Imaging ; 22(1): 76, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575477

RESUMEN

BACKGROUND: To find semi-quantitative and quantitative Positron Emission Tomography/Magnetic Resonance (PET/MR) imaging metrics of both tumor and non-malignant lymphoid tissue (bone marrow and spleen) for Progression Free Survival (PFS) and Overall Survival (OS) prediction in patients with relapsed/refractory (r/r) large B-cell lymphoma (LBCL) undergoing Chimeric Antigen Receptor (CAR) T-cell therapy. METHODS: A single-center prospective study of 16 r/r LBCL patients undergoing CD19-targeted CAR T-cell therapy. Whole body 18F-fluorodeoxyglucose (FDG) PET/MR imaging pre-therapy and 3 weeks post-therapy were followed by manual segmentation of tumors and lymphoid tissues. Semi-quantitative and quantitative metrics were extracted, and the metric-wise rate of change (Δ) between post-therapy and pre-therapy calculated. Tumor metrics included maximum Standardized Uptake Value (SUVmax), mean SUV (SUVmean), Metabolic Tumor Volume (MTV), Tumor Lesion Glycolysis (TLG), structural volume (V), total structural tumor burden (Vtotal) and mean Apparent Diffusion Coefficient (ADCmean). For lymphoid tissues, metrics extracted were SUVmean, mean Fat Fraction (FFmean) and ADCmean for bone marrow, and SUVmean, V and ADCmean for spleen. Univariate Cox regression analysis tested the relationship between extracted metrics and PFS and OS. Survival curves were produced using Kaplan-Meier analysis and compared using the log-rank test, with the median used for dichotomization. Uncorrected p-values < 0.05 were considered statistically significant. Correction for multiple comparisons was performed, with a False Discovery Rate (FDR) < 0.05 considered statistically significant. RESULTS: Pre-therapy (p < 0.05, FDR < 0.05) and Δ (p < 0.05, FDR > 0.05) total tumor burden structural and metabolic metrics were associated with PFS and/or OS. According to Kaplan-Meier analysis, a longer PFS was reached for patients with pre-therapy MTV ≤ 39.5 ml, ΔMTV≤1.35 and ΔTLG≤1.35. ΔSUVmax was associated with PFS (p < 0.05, FDR > 0.05), while ΔADCmean was associated with both PFS and OS (p < 0.05, FDR > 0.05). ΔADCmean > 0.92 gave longer PFS and OS in the Kaplan-Meier analysis. Pre-therapy bone marrow SUVmean was associated with PFS (p < 0.05, FDR < 0.05) and OS (p < 0.05, FDR > 0.05). For bone marrow FDG uptake, patient stratification was possible pre-therapy (SUVmean ≤ 1.8). CONCLUSIONS: MTV, tumor ADCmean and FDG uptake in bone marrow unaffected by tumor infiltration are possible PET/MR parameters for prediction of PFS and OS in r/r LBCL treated with CAR T-cells. TRIAL REGISTRATION: EudraCT 2016-004043-36.


Asunto(s)
Fluorodesoxiglucosa F18 , Linfoma de Células B Grandes Difuso , Humanos , Fluorodesoxiglucosa F18/metabolismo , Radiofármacos , Supervivencia sin Enfermedad , Inmunoterapia Adoptiva , Estudios Prospectivos , Pronóstico , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética , Linfoma de Células B Grandes Difuso/diagnóstico por imagen , Linfoma de Células B Grandes Difuso/terapia , Espectroscopía de Resonancia Magnética , Estudios Retrospectivos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Carga Tumoral
5.
Sci Rep ; 9(1): 6158, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30992502

RESUMEN

Quantitative multiparametric imaging is a potential key application for Positron Emission Tomography/Magnetic Resonance (PET/MR) hybrid imaging. To enable objective and automatic voxel-based multiparametric analysis in whole-body applications, the purpose of this study was to develop a multimodality whole-body atlas of functional 18F-fluorodeoxyglucose (FDG) PET and anatomical fat-water MR data of adults. Image registration was used to transform PET/MR images of healthy control subjects into male and female reference spaces, producing a fat-water MR, local tissue volume and FDG PET whole-body normal atlas consisting of 12 male (66.6 ± 6.3 years) and 15 female (69.5 ± 3.6 years) subjects. Manual segmentations of tissues and organs in the male and female reference spaces confirmed that the atlas contained adequate physiological and anatomical values. The atlas was applied in two anomaly detection tasks as proof of concept. The first task automatically detected anomalies in two subjects with suspected malignant disease using FDG data. The second task successfully detected abnormal liver fat infiltration in one subject using fat fraction data.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Imagen de Cuerpo Entero/métodos , Anciano , Femenino , Fluorodesoxiglucosa F18/análisis , Humanos , Masculino , Persona de Mediana Edad , Imagen Multimodal/métodos , Estudios Prospectivos
6.
J Nucl Med ; 58(3): 399-405, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27688481

RESUMEN

Lung cancer remains responsible for more deaths worldwide than any other cancer, but recently there has been a significant shift in the clinical paradigm regarding the initial management of subjects at high risk for this disease. Low-dose CT has demonstrated significant improvements over planar x-ray screening for patient prognoses and is now performed in the United States. Specificity of this modality, however, is poor, and the additional information from PET has the potential to improve its accuracy. Routine screening requires consideration of the effective dose delivered to the patient, and this work investigates image quality of PET for low-dose conditions, in the context of lung lesion detectability. Reduced radiotracer doses were simulated by randomly discarding counts from clinical lung cancer scans acquired in list-mode. Bias and reproducibility of lesion activity values were relatively stable even at low total counts of around 5 million trues. Additionally, numeric observer models were developed and trained with the results of 2 physicians and 3 postdoctoral researchers with PET experience in a detection task; detection sensitivity of the observers was well correlated with lesion signal-to-noise ratio. The models were used prospectively to survey detectability of lung cancer lesions, and the findings suggested a lower limit around 10 million true counts for maximizing performance. Under the acquisition parameters used in this study, this translates to an effective patient dose of less than 0.4 mSv, potentially allowing a complete low-dose PET/CT lung screening scan to be obtained under 1 mSv.


Asunto(s)
Detección Precoz del Cáncer/métodos , Fluorodesoxiglucosa F18 , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Exposición a la Radiación/análisis , Protección Radiológica/métodos , Adulto , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Dosis de Radiación , Exposición a la Radiación/prevención & control , Radiofármacos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...