Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cancer Discov ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38591846

RESUMEN

Cancer cells exhibit phenotypical plasticity and epigenetic reprogramming, which allows them to evade lineage-dependent targeted treatments by adopting lineage plasticity. The underlying mechanisms by which cancer cells exploit the epigenetic regulatory machinery to acquire lineage plasticity and therapy resistance remain poorly understood. We identified Zinc Finger Protein 397 (ZNF397) as a bona fide coactivator of the androgen receptor (AR), essential for the transcriptional program governing AR-driven luminal lineage. ZNF397 deficiency facilitates the transition of cancer cell from an AR-driven luminal lineage to a Ten-Eleven Translocation 2 (TET2)-driven lineage plastic state, ultimately promoting resistance to therapies inhibiting AR signaling. Intriguingly, our findings indicate that a TET2 inhibitor can eliminate the resistance to AR targeted therapies in ZNF397-deficient tumors. These insights uncover a novel mechanism through which prostate cancer acquires lineage plasticity via epigenetic rewiring and offer promising implications for clinical interventions designed to overcome therapy resistance dictated by lineage plasticity.

2.
bioRxiv ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38464162

RESUMEN

The androgen receptor (AR) is the central determinant of prostate tissue identity and differentiation, controlling normal, growth-suppressive prostate-specific gene expression 1 . It is also a key driver of prostate tumorigenesis, becoming "hijacked" to drive oncogenic transcription 2-5 . However, the regulatory elements determining the execution of the growth suppressive AR transcriptional program, and whether this can be reactivated in prostate cancer (PCa) cells remains unclear. Canonical androgen response element (ARE) motifs are the classic DNA binding element for AR 6 . Here, we used a genome-wide strategy to modulate regulatory elements containing AREs to define distinct AR transcriptional programs. We find that activation of these AREs is specifically associated with differentiation and growth suppressive transcription, and this can be reactivated to cause death in AR + PCa cells. In contrast, repression of AREs is well tolerated by PCa cells, but deleterious to normal prostate cells. Finally, gene expression signatures driven by ARE activity are associated with improved prognosis and luminal phenotypes in human PCa patients. This study demonstrates that canonical AREs are responsible for a normal, growth-suppressive, lineage-specific transcriptional program, that this can be reengaged in PCa cells for potential therapeutic benefit, and genes controlled by this mechanism are clinically relevant in human PCa patients.

3.
Eur Urol Oncol ; 7(2): 222-230, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37474400

RESUMEN

BACKGROUND: Prostate cancers featuring an expansile cribriform (EC) pattern are associated with worse clinical outcomes following radical prostatectomy (RP). However, studies of the genomic characteristics of Gleason pattern 4 subtypes are limited. OBJECTIVE: To explore transcriptomic characteristics and heterogeneity within Gleason pattern 4 subtypes (fused/poorly formed, glomeruloid, small cribriform, EC/intraductal carcinoma [IDC]) and the association with biochemical recurrence (BCR)-free survival. DESIGN, SETTING, AND PARTICIPANTS: This was a retrospective cohort study including 165 men with grade group 2-4 prostate cancer who underwent RP at a single academic institution (2016-2020) and Decipher testing of the RP specimen. Patients with Gleason pattern 5 were excluded. IDC and EC patterns were grouped. Median follow-up was 2.5 yr after RP for patients without BCR. OUTCOMES MEASUREMENTS AND STATISTICAL ANALYSIS: Prompted by heterogeneity within pattern 4 subtypes identified via exploratory analyses, we investigated transcriptomic consensus clusters using partitioning around medoids and hallmark gene set scores. The primary clinical outcome was BCR, defined as two consecutive prostate-specific antigen measurements >0.2 ng/ml at least 8 wk after RP, or any additional treatment. Multivariable Cox proportional-hazards models were used to determine factors associated with BCR-free survival. RESULTS AND LIMITATIONS: In this cohort, 99/165 patients (60%) had EC and 67 experienced BCR. Exploratory analyses and clustering demonstrated transcriptomic heterogeneity within each Gleason pattern 4 subtype. In the multivariable model controlled for pattern 4 subtype, margin status, Cancer of the Prostate Risk Assessment Post-Surgical score, and Decipher score, a newly identified steroid hormone-driven cluster (hazard ratio 2.35 95% confidence interval 1.01-5.47) was associated with worse BCR-free survival. The study is limited by intermediate follow-up, no validation cohort, and lack of accounting for intratumoral and intraprostatic heterogeneity. CONCLUSIONS: Transcriptomic heterogeneity was present within and across each Gleason pattern 4 subtype, demonstrating there is additional biologic diversity not captured by histologic subtypes. This heterogeneity can be used to develop novel signatures and to classify transcriptomic subtypes, which may help in refining risk stratification following RP to further guide decision-making on adjuvant and salvage treatments. PATIENT SUMMARY: We studied prostatectomy specimens and found that tumors with similar microscopic appearance can have genetic differences that may help to predict outcomes after prostatectomy for prostate cancer. Our results demonstrate that further gene expression analysis of prostate cancer subtypes may improve risk stratification after prostatectomy. Future studies are needed to develop novel gene expression signatures and validate these findings in independent sets of patients.


Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Masculino , Humanos , Estudios Retrospectivos , Transcriptoma , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/patología , Perfilación de la Expresión Génica
4.
bioRxiv ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37961351

RESUMEN

Cancer cells exhibit phenotypical plasticity and epigenetic reprogramming, which allows them to evade lineage-dependent targeted treatments by adopting lineage plasticity. The underlying mechanisms by which cancer cells exploit the epigenetic regulatory machinery to acquire lineage plasticity and therapy resistance remain poorly understood. We identified Zinc Finger Protein 397 (ZNF397) as a bona fide co-activator of the androgen receptor (AR), essential for the transcriptional program governing AR-driven luminal lineage. ZNF397 deficiency facilitates the transition of cancer cell from an AR-driven luminal lineage to a Ten-Eleven Translocation 2 (TET2)-driven lineage plastic state, ultimately promoting resistance to therapies inhibiting AR signaling. Intriguingly, our findings indicate that TET2 inhibitor can eliminate the AR targeted therapies resistance in ZNF397-deficient tumors. These insights uncover a novel mechanism through which prostate and breast cancers acquire lineage plasticity via epigenetic rewiring and offer promising implications for clinical interventions designed to overcome therapy resistance dictated by lineage plasticity. Statement of Significance: This study reveals a novel epigenetic mechanism regulating tumor lineage plasticity and therapy response, enhances understanding of drug resistance and unveils a new therapeutic strategy for prostate cancer and other malignancies. Our findings also illuminate TET2's oncogenic role and mechanistically connect TET2-driven epigenetic rewiring to lineage plasticity and therapy resistance.

6.
Semin Radiat Oncol ; 33(3): 243-251, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37331779

RESUMEN

Developing radiation tumor biomarkers that can guide personalized radiotherapy clinical decision making is a critical goal in the effort towards precision cancer medicine. High-throughput molecular assays paired with modern computational techniques have the potential to identify individual tumor-specific signatures and create tools that can help understand heterogenous patient outcomes in response to radiotherapy, allowing clinicians to fully benefit from the technological advances in molecular profiling and computational biology including machine learning. However, the increasingly complex nature of the data generated from high-throughput and "omics" assays require careful selection of analytical strategies. Furthermore, the power of modern machine learning techniques to detect subtle data patterns comes with special considerations to ensure that the results are generalizable. Herein, we review the computational framework of tumor biomarker development and describe commonly used machine learning approaches and how they are applied for radiation biomarker development using molecular data, as well as challenges and emerging research trends.


Asunto(s)
Biomarcadores de Tumor , Neoplasias , Humanos , Aprendizaje Automático , Biomarcadores , Medicina de Precisión/métodos , Neoplasias/genética , Neoplasias/radioterapia , Toma de Decisiones Clínicas
7.
Cancer Res ; 83(16): 2763-2774, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37289025

RESUMEN

Systemic targeted therapy in prostate cancer is primarily focused on ablating androgen signaling. Androgen deprivation therapy and second-generation androgen receptor (AR)-targeted therapy selectively favor the development of treatment-resistant subtypes of metastatic castration-resistant prostate cancer (mCRPC), defined by AR and neuroendocrine (NE) markers. Molecular drivers of double-negative (AR-/NE-) mCRPC are poorly defined. In this study, we comprehensively characterized treatment-emergent mCRPC by integrating matched RNA sequencing, whole-genome sequencing, and whole-genome bisulfite sequencing from 210 tumors. AR-/NE- tumors were clinically and molecularly distinct from other mCRPC subtypes, with the shortest survival, amplification of the chromatin remodeler CHD7, and PTEN loss. Methylation changes in CHD7 candidate enhancers were linked to elevated CHD7 expression in AR-/NE+ tumors. Genome-wide methylation analysis nominated Krüppel-like factor 5 (KLF5) as a driver of the AR-/NE- phenotype, and KLF5 activity was linked to RB1 loss. These observations reveal the aggressiveness of AR-/NE- mCRPC and could facilitate the identification of therapeutic targets in this highly aggressive disease. SIGNIFICANCE: Comprehensive characterization of the five subtypes of metastatic castration-resistant prostate cancer identified transcription factors that drive each subtype and showed that the double-negative subtype has the worst prognosis.


Asunto(s)
Tumores Neuroendocrinos , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Epigenómica , Antagonistas de Andrógenos/uso terapéutico , Andrógenos , Genómica , Tumores Neuroendocrinos/genética
8.
J Immunother Cancer ; 11(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37208129

RESUMEN

BACKGROUND: The implementation of immunological biomarkers for radiotherapy (RT) individualization in breast cancer requires consideration of tumor-intrinsic factors. This study aimed to investigate whether the integration of histological grade, tumor-infiltrating lymphocytes (TILs), programmed cell death protein-1 (PD-1), and programmed death ligand-1 (PD-L1) can identify tumors with aggressive characteristics that can be downgraded regarding the need for RT. METHODS: The SweBCG91RT trial included 1178 patients with stage I-IIA breast cancer, randomized to breast-conserving surgery with or without adjuvant RT, and followed for a median time of 15.2 years. Immunohistochemical analyses of TILs, PD-1, and PD-L1 were performed. An activated immune response was defined as stromal TILs ≥10% and PD-1 and/or PD-L1 expression in ≥1% of lymphocytes. Tumors were categorized as high-risk or low-risk using assessments of histological grade and proliferation as measured by gene expression. The risk of ipsilateral breast tumor recurrence (IBTR) and benefit of RT were then analyzed with 10 years follow-up based on the integration of immune activation and tumor-intrinsic risk group. RESULTS: Among high-risk tumors, an activated immune infiltrate was associated with a reduced risk of IBTR (HR 0.34, 95% CI 0.16 to 0.73, p=0.006). The incidence of IBTR in this group was 12.1% (5.6-25.0) without RT and 4.4% (1.1-16.3) with RT. In contrast, the incidence of IBTR in the high-risk group without an activated immune infiltrate was 29.6% (21.4-40.2) without RT and 12.8% (6.6-23.9) with RT. Among low-risk tumors, no evidence of a favorable prognostic effect of an activated immune infiltrate was seen (HR 2.0, 95% CI 0.87 to 4.6, p=0.100). CONCLUSIONS: Integrating histological grade and immunological biomarkers can identify tumors with aggressive characteristics but a low risk of IBTR despite a lack of RT boost and systemic therapy. Among high-risk tumors, the risk reduction of IBTR conferred by an activated immune infiltrate is comparable to treatment with RT. These findings may apply to cohorts dominated by estrogen receptor-positive tumors.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/patología , Linfocitos Infiltrantes de Tumor , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Recurrencia Local de Neoplasia/patología , Biomarcadores/metabolismo , Ligandos
10.
Nat Commun ; 14(1): 1968, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031196

RESUMEN

Response to androgen receptor signaling inhibitors (ARSI) varies widely in metastatic castration resistant prostate cancer (mCRPC). To improve treatment guidance, biomarkers are needed. We use whole-genomics (WGS; n = 155) with matching whole-transcriptomics (WTS; n = 113) from biopsies of ARSI-treated mCRPC patients for unbiased discovery of biomarkers and development of machine learning-based prediction models. Tumor mutational burden (q < 0.001), structural variants (q < 0.05), tandem duplications (q < 0.05) and deletions (q < 0.05) are enriched in poor responders, coupled with distinct transcriptomic expression profiles. Validating various classification models predicting treatment duration with ARSI on our internal and external mCRPC cohort reveals two best-performing models, based on the combination of prior treatment information with either the four combined enriched genomic markers or with overall transcriptomic profiles. In conclusion, predictive models combining genomic, transcriptomic, and clinical data can predict response to ARSI in mCRPC patients and, with additional optimization and prospective validation, could improve treatment guidance.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Androstenos/uso terapéutico , Feniltiohidantoína/uso terapéutico , Nitrilos/uso terapéutico , Biomarcadores de Tumor/genética , Resultado del Tratamiento
11.
Clin Cancer Res ; 29(9): 1783-1793, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37071498

RESUMEN

PURPOSE: The local immune infiltrate's influence on tumor progression may be closely linked to tumor-intrinsic factors. The study aimed to investigate whether integrating immunologic and tumor-intrinsic factors can identify patients from a low-risk cohort who may be candidates for radiotherapy (RT) de-escalation. EXPERIMENTAL DESIGN: The SweBCG91RT trial included 1,178 patients with stage I to IIA breast cancer, randomized to breast-conserving surgery with or without adjuvant RT, and followed for a median of 15.2 years. We trained two models designed to capture immunologic activity and immunomodulatory tumor-intrinsic qualities, respectively. We then analyzed if combining these two variables could further stratify tumors, allowing for identifying a subgroup where RT de-escalation is feasible, despite clinical indicators of a high risk of ipsilateral breast tumor recurrence (IBTR). RESULTS: The prognostic effect of the immunologic model could be predicted by the tumor-intrinsic model (Pinteraction = 0.01). By integrating measurements of the immunologic- and tumor-intrinsic models, patients who benefited from an active immune infiltrate could be identified. These patients benefited from standard RT (HR, 0.28; 95% CI, 0.09-0.85; P = 0.025) and had a 5.4% 10-year incidence of IBTR after irradiation despite high-risk genomic indicators and a low frequency of systemic therapy. In contrast, high-risk tumors without an immune infiltrate had a high 10-year incidence of IBTR despite RT treatment (19.5%; 95% CI, 12.2-30.3). CONCLUSIONS: Integrating tumor-intrinsic and immunologic factors may identify immunogenic tumors in early-stage breast cancer populations dominated by ER-positive tumors. Patients who benefit from an activated immune infiltrate may be candidates for RT de-escalation.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Recurrencia Local de Neoplasia/patología , Pronóstico , Mastectomía Segmentaria/métodos , Radioterapia Adyuvante , Factores Inmunológicos/uso terapéutico
12.
Commun Biol ; 6(1): 139, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732562

RESUMEN

Ipsilateral breast tumor recurrence (IBTR) is a clinically important event, where an isolated in-breast recurrence is a potentially curable event but associated with an increased risk of distant metastasis and breast cancer death. It remains unclear if IBTRs are associated with molecular changes that can be explored as a resource for precision medicine strategies. Here, we employed proteogenomics to analyze a cohort of 27 primary breast cancers and their matched IBTRs to define proteogenomic determinants of molecular tumor evolution. Our analyses revealed a relationship between hormonal receptors status and proliferation levels resulting in the gain of somatic mutations and copy number. This in turn re-programmed the transcriptome and proteome towards a highly replicating and genomically unstable IBTRs, possibly enhanced by APOBEC3B. In order to investigate the origins of IBTRs, a second analysis that included primaries with no recurrence pinpointed proliferation and immune infiltration as predictive of IBTR. In conclusion, our study shows that breast tumors evolve into different IBTRs depending on hormonal status and proliferation and that immune cell infiltration and Ki-67 are significantly elevated in primary tumors that develop IBTR. These results can serve as a starting point to explore markers to predict IBTR formation and stratify patients for adjuvant therapy.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Proteogenómica , Humanos , Animales , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Mastectomía Segmentaria , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Terapia Combinada , Citidina Desaminasa , Antígenos de Histocompatibilidad Menor
13.
J Clin Oncol ; 41(8): 1533-1540, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36599119

RESUMEN

PURPOSE: Adjuvant radiotherapy (RT) is used for women with early-stage invasive breast cancer treated with breast-conserving surgery. However, some women with low risk of recurrence may safely be spared RT. This study aimed to identify these women using a molecular-based approach. METHODS: We analyzed two randomized trials of women with node-negative invasive breast cancer to ± RT following breast-conserving surgery: SweBCG91-RT (stage I-II, no adjuvant systemic therapy) and Princess Margaret (age 50 years or older, T1-T2, adjuvant tamoxifen). Transcriptome-wide profiling was performed (Affymetrix Human Exon 1.0 ST microarray). Patients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative tumors and with gene expression data were included. The SweBCG91-RT cohort was divided into training (N = 243) and validation (N = 354) cohorts. A 16-gene signature named Profile for the Omission of Local Adjuvant Radiation (POLAR) was trained to predict locoregional recurrence (LRR) using elastic net regression. POLAR was then validated in the SweBCG91-RT validation cohort and the Princess Margaret cohort (N = 132). RESULTS: Patients categorized as POLAR low-risk without RT had a 10-year LRR of 6% (95% CI, 2 to 16) and 7% (0 to 27) in SweBCG91-RT and Princess Margaret cohorts, respectively. There was no significant benefit from RT in POLAR low-risk patients (hazard ratio [HR], 1.1 [0.39 to 3.4], P = .81, and HR, 1.5 [0.14 to 16], P = .74, respectively). Patients categorized as POLAR high-risk had a significant decreased risk of LRR with RT (HR, 0.43 [0.24 to 0.78], P = .0055, and HR, 0.25 [0.07 to 0.92], P = .038, respectively). An exploratory analysis testing for interaction between RT and POLAR in the combined validation cohort was performed (P = .066). CONCLUSION: The novel POLAR genomic signature on the basis of LRR biology may identify patients with a low risk of LRR despite not receiving RT, and thus may be candidates for RT omission.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Persona de Mediana Edad , Neoplasias de la Mama/genética , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/cirugía , Radioterapia Adyuvante , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Mama/patología , Mastectomía Segmentaria
14.
Cancer Res Commun ; 2(12): 1545-1557, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36561929

RESUMEN

We report the inverse association between the expression of androgen receptor (AR) and interleukin-1beta (IL-1ß) in a cohort of patients with metastatic castration resistant prostate cancer (mCRPC). We also discovered that AR represses the IL-1ß gene by binding an androgen response element (ARE) half-site located within the promoter, which explains the IL-1ß expression in AR-negative (ARNEG) cancer cells. Consistently, androgen-depletion or AR-pathway inhibitors (ARIs) de-repressed IL-1ß in ARPOS cancer cells, both in vitro and in vivo. The AR transcriptional repression is sustained by histone de-acetylation at the H3K27 mark in the IL-1ß promoter. Notably, patients' data suggest that DNA methylation prevents IL-1ß expression, even if the AR-signaling axis is inactive. Our previous studies show that secreted IL-1ß supports metastatic progression in mice by altering the transcriptome of tumor-associated bone stroma. Thus, in prostate cancer patients harboring ARNEG tumor cells or treated with ADT/ARIs, and with the IL-1ß gene unmethylated, IL-1ß could condition the metastatic microenvironment to sustain disease progression.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata , Humanos , Masculino , Animales , Ratones , Receptores Androgénicos/genética , Interleucina-1beta/genética , Andrógenos , Neoplasias de la Próstata/genética , Transducción de Señal/genética , Neoplasias Óseas/genética , Microambiente Tumoral
15.
Cancer Res ; 82(21): 3888-3902, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36251389

RESUMEN

Analysis of DNA methylation is a valuable tool to understand disease progression and is increasingly being used to create diagnostic and prognostic clinical biomarkers. While conversion of cytosine to 5-methylcytosine (5mC) commonly results in transcriptional repression, further conversion to 5-hydroxymethylcytosine (5hmC) is associated with transcriptional activation. Here we perform the first study integrating whole-genome 5hmC with DNA, 5mC, and transcriptome sequencing in clinical samples of benign, localized, and advanced prostate cancer. 5hmC is shown to mark activation of cancer drivers and downstream targets. Furthermore, 5hmC sequencing revealed profoundly altered cell states throughout the disease course, characterized by increased proliferation, oncogenic signaling, dedifferentiation, and lineage plasticity to neuroendocrine and gastrointestinal lineages. Finally, 5hmC sequencing of cell-free DNA from patients with metastatic disease proved useful as a prognostic biomarker able to identify an aggressive subtype of prostate cancer using the genes TOP2A and EZH2, previously only detectable by transcriptomic analysis of solid tumor biopsies. Overall, these findings reveal that 5hmC marks epigenomic activation in prostate cancer and identify hallmarks of prostate cancer progression with potential as biomarkers of aggressive disease. SIGNIFICANCE: In prostate cancer, 5-hydroxymethylcytosine delineates oncogene activation and stage-specific cell states and can be analyzed in liquid biopsies to detect cancer phenotypes. See related article by Wu and Attard, p. 3880.


Asunto(s)
5-Metilcitosina , Neoplasias de la Próstata , Masculino , Humanos , Próstata , Biopsia
16.
Clin Cancer Res ; 28(24): 5396-5404, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36260524

RESUMEN

PURPOSE: Although numerous biology-driven subtypes have been described previously in metastatic castration-resistant prostate cancer (mCRPC), unsupervised molecular subtyping based on gene expression has been less studied, especially using large cohorts. Thus, we sought to identify the intrinsic molecular subtypes of mCRPC and assess molecular and clinical correlates in the largest combined cohort of mCRPC samples with gene expression data available to date. EXPERIMENTAL DESIGN: We combined and batch-effect corrected gene expression data from four mCRPC cohorts from the Fred Hutchinson Cancer Research Center (N = 157), a small-cell neuroendocrine (NE) prostate cancer (SCNC)-enriched cohort from Weill Cornell Medicine (N = 49), and cohorts from the Stand Up 2 Cancer/Prostate Cancer Foundation East Coast Dream Team (N = 266) and the West Coast Dream Team (N = 162). RESULTS: Hierarchical clustering of RNA-sequencing data from these 634 mCRPC samples identified two distinct adenocarcinoma subtypes, one of which (adeno-immune) was characterized by higher gene expression of immune pathways, higher CIBERSORTx immune scores, diminished ASI benefit, and non-lymph node metastasis tropism compared with an adeno-classic subtype. We also identified two distinct subtypes with enrichment for an NE phenotype, including an NE-liver subgroup characterized by liver metastasis tropism, PTEN loss, and APC and SPOP mutations compared with an NE-classic subgroup. CONCLUSIONS: Our results emphasize the heterogeneity of mCRPC beyond currently accepted molecular phenotypes, and suggest that future studies should consider incorporating transcriptome-wide profiling to better understand how these differences impact treatment responses and outcomes.


Asunto(s)
Adenocarcinoma , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Perfilación de la Expresión Génica , Proteínas Nucleares/genética , Proteínas Represoras/genética
17.
NPJ Genom Med ; 7(1): 58, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253482

RESUMEN

DNA mutations in specific genes can confer preferential benefit from drugs targeting those genes. However, other molecular perturbations can "phenocopy" pathogenic mutations, but would not be identified using standard clinical sequencing, leading to missed opportunities for other patients to benefit from targeted treatments. We hypothesized that RNA phenocopy signatures of key cancer driver gene mutations could improve our ability to predict response to targeted therapies, despite not being directly trained on drug response. To test this, we built gene expression signatures in tissue samples for specific mutations and found that phenocopy signatures broadly increased accuracy of drug response predictions in-vitro compared to DNA mutation alone, and identified additional cancer cell lines that respond well with a positive/negative predictive value on par or better than DNA mutations. We further validated our results across four clinical cohorts. Our results suggest that routine RNA sequencing of tumors to identify phenocopies in addition to standard targeted DNA sequencing would improve our ability to accurately select patients for targeted therapies in the clinic.

18.
Cancer Discov ; 12(9): 2074-2097, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35754340

RESUMEN

In prostate cancer, androgen receptor (AR)-targeting agents are very effective in various disease stages. However, therapy resistance inevitably occurs, and little is known about how tumor cells adapt to bypass AR suppression. Here, we performed integrative multiomics analyses on tissues isolated before and after 3 months of AR-targeting enzalutamide monotherapy from patients with high-risk prostate cancer enrolled in a neoadjuvant clinical trial. Transcriptomic analyses demonstrated that AR inhibition drove tumors toward a neuroendocrine-like disease state. Additionally, epigenomic profiling revealed massive enzalutamide-induced reprogramming of pioneer factor FOXA1 from inactive chromatin sites toward active cis-regulatory elements that dictate prosurvival signals. Notably, treatment-induced FOXA1 sites were enriched for the circadian clock component ARNTL. Posttreatment ARNTL levels were associated with patients' clinical outcomes, and ARNTL knockout strongly decreased prostate cancer cell growth. Our data highlight a remarkable cistromic plasticity of FOXA1 following AR-targeted therapy and revealed an acquired dependency on the circadian regulator ARNTL, a novel candidate therapeutic target. SIGNIFICANCE: Understanding how prostate cancers adapt to AR-targeted interventions is critical for identifying novel drug targets to improve the clinical management of treatment-resistant disease. Our study revealed an enzalutamide-induced epigenomic plasticity toward prosurvival signaling and uncovered the circadian regulator ARNTL as an acquired vulnerability after AR inhibition, presenting a novel lead for therapeutic development. See related commentary by Zhang et al., p. 2017. This article is highlighted in the In This Issue feature, p. 2007.


Asunto(s)
Andrógenos , Neoplasias de la Próstata Resistentes a la Castración , Factores de Transcripción ARNTL/genética , Andrógenos/farmacología , Andrógenos/uso terapéutico , Línea Celular Tumoral , Ritmo Circadiano , Resistencia a Antineoplásicos/genética , Epigenómica , Humanos , Masculino , Nitrilos/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética
19.
Clin Epigenetics ; 14(1): 60, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35509021

RESUMEN

The androgen receptor (AR) is a prostate master transcription factor. It binds to genetic enhancers, where it regulates gene activity and plays a fundamental role in prostate pathophysiology. Previous work has demonstrated that AR-DNA binding is systematically and consistently reprogrammed during prostate tumorigenesis and disease progression. We charted these reprogrammed AR sites and identified genes proximal to them. We were able to devise gene lists based on AR status within specific histological contexts: normal prostate epithelium, primary prostate tumor, and metastatic prostate cancer. We evaluated expression of the genes in these gene sets in subjects from two distinct clinical cohorts-men treated with surgery for localized prostate cancer and men with metastatic prostate cancer. Among men with localized prostate cancer, expression of genes proximal to AR sites lost in the transition from normal prostate to prostate tumor was associated with clinical outcome. Among men with metastatic disease, expression of genes proximal to AR sites gained in metastatic tumors was associated with clinical outcome. These results are consistent with the notion that AR is fundamental to both maintaining differentiation in normal prostate tissue and driving de-differentiation in advanced prostate cancer. More broadly, the study demonstrates the power of incorporating context-dependent epigenetic data into genetic analyses.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Línea Celular Tumoral , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Pronóstico , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
20.
Eur Urol Oncol ; 5(6): 714-718, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35216942

RESUMEN

Sacituzumab govitecan (SG) is an antibody-drug conjugate (ADC) targeting TROP2, which has recently been approved for treatment-refractory metastatic urothelial cancer (UC). However, the variability of TROP2 expression across different bladder cancer (BC) subtypes, as well as after enfortumab vedotin (EV) exposure, remains unknown. Using gene expression data from four clinical cohorts with >1400 patient samples of muscle-invasive BC and a BC tissue microarray, we found that TROP2 mRNA and protein are highly expressed across basal, luminal, and stroma-rich subtypes, but depleted in the neuroendocrine subtype. In addition, TROP2 mRNA levels are correlated with NECTIN4 mRNA but are more highly expressed than NECTIN4 mRNA in patient cohorts and BC cell lines. Moreover, CRISPR/Cas9-mediated knockdown of TROP2 demonstrates that its expression is one factor governing SG sensitivity. After prolonged EV exposure, cells can downregulate NECTIN4, leading to EV resistance, but retain TROP2 expression and remain sensitive to SG, suggesting nonoverlapping resistance mechanisms to these ADCs. While our findings warrant further validation, they have significant implications for biomarker development, patient selection, and treatment sequencing in the clinic as well as clinical trial design and stratification for metastatic BC patients. PATIENT SUMMARY: In this report, we investigated the expression levels of the drug target TROP2 across different molecular subtypes of bladder cancer in multiple patient cohorts and cell lines. We found high levels of TROP2 in most subtypes except in the neuroendocrine subtype. Overall, TROP2 gene expression is higher than NECTIN4 gene expression, and cells resistant to enfortumab vedotin (EV), a NECTIN4-targeting antibody-drug conjugate, remain sensitive to sacituzumab govitecan (SG). Our findings suggest that SG may be effective across most bladder cancer subtypes, including the bladder cancers previously treated with EV.


Asunto(s)
Carcinoma de Células Transicionales , Inmunoconjugados , Neoplasias de la Vejiga Urinaria , Humanos , Carcinoma de Células Transicionales/tratamiento farmacológico , Carcinoma de Células Transicionales/genética , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Inmunoconjugados/uso terapéutico , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/uso terapéutico , ARN Mensajero/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA