Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 25(9): e14474, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39074490

RESUMEN

BACKGROUND: The delineation of clinical target volumes (CTVs) for radiotherapy for nasopharyngeal cancer is complex and varies based on the location and extent of disease. PURPOSE: The current study aimed to develop an auto-contouring solution following one protocol guidelines (NRG-HN001) that can be adjusted to meet other guidelines, such as RTOG-0225 and the 2018 International guidelines. METHODS: The study used 2-channel 3-dimensional U-Net and nnU-Net framework to auto-contour 27 normal structures in the head and neck (H&N) region that are used to define CTVs in the protocol. To define the CTV-Expansion (CTV1 and CTV2) and CTV-Overall (the outer envelope of all the CTV contours), we used adjustable morphological geometric landmarks and mimicked physician interpretation of the protocol rules by partially or fully including select anatomic structures. The results were evaluated quantitatively using the dice similarity coefficient (DSC) and mean surface distance (MSD) and qualitatively by independent reviews by two H&N radiation oncologists. RESULTS: The auto-contouring tool showed high accuracy for nasopharyngeal CTVs. Comparison between auto-contours and clinical contours for 19 patients with cancers of various stages showed a DSC of 0.94 ± 0.02 and MSD of 0.4 ± 0.4 mm for CTV-Expansion and a DSC of 0.83 ± 0.02 and MSD of 2.4 ± 0.5 mm for CTV-Overall. Upon independent review, two H&N physicians found the auto-contours to be usable without edits in 85% and 75% of cases. In 15% of cases, minor edits were required by both physicians. Thus, one physician rated 100% of the auto-contours as usable (use as is, or after minor edits), while the other physician rated 90% as usable. The second physician required major edits in 10% of cases. CONCLUSIONS: The study demonstrates the ability of an auto-contouring tool to reliably delineate nasopharyngeal CTVs based on protocol guidelines. The tool was found to be clinically acceptable by two H&N radiation oncology physicians in at least 90% of the cases.


Asunto(s)
Neoplasias Nasofaríngeas , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/diagnóstico por imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo/efectos de la radiación , Radioterapia de Intensidad Modulada/métodos , Puntos Anatómicos de Referencia , Tomografía Computarizada por Rayos X/métodos , Pronóstico , Procesamiento de Imagen Asistido por Computador/métodos
2.
J Imaging ; 9(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37998092

RESUMEN

In this study, we aimed to enhance the contouring accuracy of cardiac pacemakers by improving their visualization using deep learning models to predict MV CBCT images based on kV CT or CBCT images. Ten pacemakers and four thorax phantoms were included, creating a total of 35 combinations. Each combination was imaged on a Varian Halcyon (kV/MV CBCT images) and Siemens SOMATOM CT scanner (kV CT images). Two generative adversarial network (GAN)-based models, cycleGAN and conditional GAN (cGAN), were trained to generate synthetic MV (sMV) CBCT images from kV CT/CBCT images using twenty-eight datasets (80%). The pacemakers in the sMV CBCT images and original MV CBCT images were manually delineated and reviewed by three users. The Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and mean surface distance (MSD) were used to compare contour accuracy. Visual inspection showed the improved visualization of pacemakers on sMV CBCT images compared to original kV CT/CBCT images. Moreover, cGAN demonstrated superior performance in enhancing pacemaker visualization compared to cycleGAN. The mean DSC, HD95, and MSD for contours on sMV CBCT images generated from kV CT/CBCT images were 0.91 ± 0.02/0.92 ± 0.01, 1.38 ± 0.31 mm/1.18 ± 0.20 mm, and 0.42 ± 0.07 mm/0.36 ± 0.06 mm using the cGAN model. Deep learning-based methods, specifically cycleGAN and cGAN, can effectively enhance the visualization of pacemakers in thorax kV CT/CBCT images, therefore improving the contouring precision of these devices.

3.
Diagnostics (Basel) ; 13(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36832155

RESUMEN

Developers and users of artificial-intelligence-based tools for automatic contouring and treatment planning in radiotherapy are expected to assess clinical acceptability of these tools. However, what is 'clinical acceptability'? Quantitative and qualitative approaches have been used to assess this ill-defined concept, all of which have advantages and disadvantages or limitations. The approach chosen may depend on the goal of the study as well as on available resources. In this paper, we discuss various aspects of 'clinical acceptability' and how they can move us toward a standard for defining clinical acceptability of new autocontouring and planning tools.

4.
Comput Med Imaging Graph ; 90: 101907, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33845433

RESUMEN

PURPOSE: We conducted our study to develop a tool capable of automatically detecting dental artifacts in a CT scan on a slice-by-slice basis and to assess the dosimetric impact of implementing the tool into the Radiation Planning Assistant (RPA), a web-based platform designed to fully automate the radiation therapy treatment planning process. METHODS: We developed an automatic dental artifact identification tool and assessed the dosimetric impact of its use in the RPA. Three users manually annotated 83,676 head-and-neck (HN) CT slices (549 patients). Majority-voting was applied to the individual annotations to determine the presence or absence of dental artifacts. The patients were divided into train, cross-validation, and test data sets (ratio: 3:1:1, respectively). A random subset of images without dental artifacts was used to balance classes (1:1) in the training data set. The Inception-V3 deep learning model was trained with the binary cross-entropy loss function. With use of this model, we automatically identified artifacts on 15 RPA HN plans on a slice-by-slice basis and investigated three dental artifact management methods applied before and after volumetric modulated arc therapy (VMAT) plan optimization. The resulting dose distributions and target coverage were quantified. RESULTS: Per-slice accuracy, sensitivity, and specificity were 99 %, 91 %, and 99 %, respectively. The model identified all patients with artifacts. Small dosimetric differences in total plan dose were observed between the various density-override methods (±1 Gy). For the pre- and post-optimized plans, 90 % and 99 %, respectively, of dose comparisons resulted in normal structure dose differences of ±1 Gy. Differences in the volume of structures receiving 95 % of the prescribed dose (V95[%]) were ≤0.25 % for 100 % of plans. CONCLUSION: The dosimetric impact of applying dental artifact management before and after artifact plan optimization was minor. Our results suggest that not accounting for dental artifacts in the current RPA workflow (where only post-optimization dental artifact management is possible) may result in minor dosimetric differences. If RPA users choose to override CT densities as a solution to managing dental artifacts, our results suggest segmenting the volume of the artifact and overriding its density to water is a safe option.


Asunto(s)
Artefactos , Radioterapia de Intensidad Modulada , Humanos , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...