Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38730753

RESUMEN

This review aims to highlight the most recent advances in the field of the synthesis of branched copolymers and nanogels using reversible addition-fragmentation chain transfer (RAFT) polymerization. RAFT polymerization is a reversible deactivation radical polymerization technique (RDRP) that has gained tremendous attention due to its versatility, compatibility with a plethora of functional monomers, and mild polymerization conditions. These parameters lead to final polymers with good control over the molar mass and narrow molar mass distributions. Branched polymers can be defined as the incorporation of secondary polymer chains to a primary backbone, resulting in a wide range of complex macromolecular architectures, like star-shaped, graft, and hyperbranched polymers and nanogels. These subcategories will be discussed in detail in this review in terms of synthesis routes and properties, mainly in solutions.

2.
Pharmaceutics ; 15(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37514036

RESUMEN

Chitosan is a naturally occurring polymer derived from the deacetylation of chitin, which is an abundant carbohydrate found mainly in the shells of various marine and terrestrial (micro)organisms. Chitosan has been extensively used to construct nanoparticles (NPs), which are biocompatible, biodegradable, non-toxic, easy to prepare, and can function as effective drug delivery systems. Moreover, chitosan NPs have been employed in gene and vaccine delivery, as well as advanced cancer therapy, and they can also serve as new therapeutic tools against viral infections. In this review, we summarize the most recent developments in the field of chitosan-based NPs intended as nucleic acid delivery vehicles and gene therapy vectors. Special attention is given to the technological aspects of chitosan complexes for nucleic acid delivery.

3.
Polymers (Basel) ; 15(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36850178

RESUMEN

The interactions of two star polymers based on poly (2-(dimethylamino)ethyl methacrylate) with different types of nucleic acids are investigated. The star polymers differ only in their functionality to bear protonable amino or permanently charged quaternary ammonium groups, while DNAs of different molar masses, lengths and topologies are used. The main physicochemical parameters of the resulting polyplexes are determined. The influence of the polymer' functionality and length and topology of the DNA on the structure and properties of the polyelectrolyte complexes is established. The quaternized polymer is characterized by a high binding affinity to DNA and formed strongly positively charged, compact and tight polyplexes. The parent, non-quaternized polymer exhibits an enhanced buffering capacity and weakened polymer/DNA interactions, particularly upon the addition of NaCl, resulting in the formation of less compact and tight polyplexes. The cytotoxic evaluation of the systems indicates that they are sparing with respect to the cell lines studied including osteosarcoma, osteoblast and human adipose-derived mesenchymal stem cells and exhibit good biocompatibility. Transfection experiments reveal that the non-quaternized polymer is effective at transferring DNA into cells, which is attributed to its high buffering capacity, facilitating the endo-lysosomal escape of the polyplex, the loose structure of the latter one and weakened polymer/DNA interactions, benefitting the DNA release.

4.
Colloids Surf B Biointerfaces ; 208: 112141, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34624599

RESUMEN

Chimeric or mixed nanosystems belong to the class of advanced therapeutics. Their distinctive characteristic compared with other types of nanoparticles is that they combine two or more different classes of biomaterials. These platforms have created a promising and versatile field of nanomedicine, incorporating materials that are biocompatible, such as lipids, but also functional, such as stimuli-responsive polymers. In the present work, thermoresponsive chimeric nanocarriers composed of l-α-phosphatidylcholine (Egg, Chicken) (EPC) phospholipids and poly(N-isopropylacrylamide)-b-poly(lauryl acrylate) (PNIPAM-b-PLA) block copolymers were designed and developed. Initially, model lipid bilayers with incorporated polymers and drug molecule TRAM-34 were built and studied for their thermodynamics, in order to assess the stability and functionality of the systems. Chimeric nanoparticles of EPC and PNIPAM-b-PLA were then developed and evaluated for their physicochemical properties in different medium conditions, as well as for their morphology. Polymer incorporation led to alterations in the properties and morphology of the nanoparticles, while interactions with serum proteins were absent. TRAM-34 was also incorporated inside the developed nanocarriers, followed by incorporation and release studies, which revealed the functionality of the system in elevated temperature conditions. Finally, in vitro studies on normal cells suggest the biocompatibility of these nanosystems. The proposed platforms are promising for further studies and applications in vitro and in vivo.


Asunto(s)
Liposomas , Polímeros , Sistemas de Liberación de Medicamentos , Membrana Dobles de Lípidos , Fosfolípidos
5.
Polymers (Basel) ; 13(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34301119

RESUMEN

In this work, the ability of thermo-responsive poly [butyl acrylate-b-N-isopropylacrylamide-b-2-(dimethylamino) ethyl acrylate] (PnBA-b-PNIPAM-b-PDMAEA) triblock terpolymer self-assemblies, as well as of their quaternized analogs (PnBA-b-PNIPAM-b-QPDMAEA), to form polyplexes with DNA through electrostatic interactions was examined. Terpolymer/DNA polyplexes were prepared in three different amine over phosphate group ratios (N/P), and linear DNA with a 2000 base pair length was used. In aqueous solutions, the terpolymers formed aggregates of micelles with mixed PNIPAM/(Q)PDMAEA coronas and PnBA cores. The PnBA-b-PNIPAM-b-PDMAEA terpolymers' micellar aggregates were also examined as carriers for the model hydrophobic drug curcumin (CUR). The complexation ability of the terpolymer with DNA was studied by UV-Vis spectroscopy and fluorescence spectroscopy by investigating ethidium bromide quenching. Fluorescence was also used for the determination of the intrinsic fluorescence of the CUR-loaded micellar aggregates. The structural characteristics of the polyplexes and the CUR-loaded aggregates were investigated by dynamic and electrophoretic light scattering techniques. Polyplexes were found to structurally respond to changes in solution temperature and ionic strength, while the intrinsic fluorescence of encapsulated CUR was increased at temperatures above ambient.

6.
Polymers (Basel) ; 13(11)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067443

RESUMEN

This review article aims to cover the most recent advances regarding the synthesis of linear ABC-type triblock terpolymers and star-shaped polymers by RAFT polymerization, as well as their self-assembly properties in aqueous solutions. RAFT polymerization has received extensive attention, as it is a versatile technique, compatible with a great variety of functional monomers and reaction conditions, while providing exceptional and precise control over the final structure, with well-defined side-groups and post-polymerization engineering potential. Linear triblock terpolymers synthesis can lead to very interesting novel ideas, since there are countless combinations of stimuli/non-stimuli and hydrophilic/hydrophobic monomers that someone can use. One of their most interesting features is their ubiquitous ability to self-assemble in different nanostructures depending on their degree of polymerization (DP), block composition, solubilization protocol, internal and external stimuli. On the other hand, star-shaped polymers exhibit a more stable nanostructure, with a distinct crosslinked core and arm blocks that can also incorporate stimuli-responsive blocks for "smart" applications.

7.
J Colloid Interface Sci ; 599: 313-325, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33957424

RESUMEN

Hydrophobic blocks of amphiphilic block copolymers often form glassy micellar cores at room temperature with a rigid structure that limits their applications as nanocapsules for targeted delivery. Nevertheless, we prepared and analyzed core/shell micelles with a soft core, formed by a self-assembled block copolymer consisting of a hydrophobic block and a polycation block, poly(lauryl acrylate)-block-poly(trimethyl-aminoethyl acrylate) (PLA-QPDMAEA), in aqueous solution. By light and small-angle neutron scattering, by transmission electron microscopy and by fluorescence spectroscopy, we showed that these core/shell micelles are spherical and cylindrical with a fluid-like PLA core and a positively charged outer shell and that they can encapsulate and release hydrophobic solutes. Moreover, after mixing these PLA-QPDMAEA core/shell micelles with another diblock copolymer, consisting of a hydrophilic block and a polyanion block, namely poly(ethylene oxide)-block-poly(methacrylic acid) (PEO-PMAA), we observed the formation of novel vesicle-like multicompartment structures containing both soft hydrophobic and interpolyelectrolyte (IPEC) layers. By combining small-angle neutron scattering with self-consistent field modeling, we confirmed the formation of these complex vesicle-like structures with a swollen PEO core, an IPEC inner layer, a PLA soft layer, an IPEC outer layer and a loose PEO corona. Thus, these multicompartment micelles with fluid and IPEC layers and a hydrophilic corona may be used as nanocapsules with several tunable properties, including the ability to control the thickness of each layer, the charge of the IPEC layers and the stability of the micelles, to deliver both hydrophobic and multivalent solutes.

8.
Methods Mol Biol ; 2207: 71-83, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33113128

RESUMEN

Drug encapsulation into amphiphilic block copolymer micelles aims to increase drug solubility and minimize drug degradation upon administration, avoid undesirable side effects and ameliorate drug bioavailability. Drug encapsulation methodologies including thin-film hydration method and organic cosolvent method are described in this chapter. Often, it is desirable to determine the most efficient solubilization protocol leading to functional drug delivery nanovehicles in each case. The encapsulation of curcumin into PEO-b-PPO-b-PEO (Pluronic F-127) polymeric micelles through thin-film hydration method presents the most promising results. Indomethacin can be loaded successfully into the hydrophobic cores of PEO-b-PCL amphiphilic block copolymer micelles following both encapsulation protocols.


Asunto(s)
Curcumina/química , Portadores de Fármacos/química , Micelas , Polietilenglicoles/química , Glicoles de Propileno/química , Curcumina/uso terapéutico , Portadores de Fármacos/uso terapéutico , Interacciones Hidrofóbicas e Hidrofílicas , Polietilenglicoles/uso terapéutico , Glicoles de Propileno/uso terapéutico , Solubilidad
9.
Methods Mol Biol ; 2207: 221-233, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33113139

RESUMEN

Stimuli-responsive nanosystems are an emerging technology in the field of therapy and are very promising for various applications, including targeted drug delivery. In this chapter, our scope is to integrate two different methodologies, namely differential scanning calorimetry (DSC) and dynamic light scattering (DLS), in order to rationally approach the functional behavior of thermoresponsive chimeric/mixed liposomes and interpret their thermoresponsiveness on a thermodynamic basis. In particular, chimeric bilayers comprised of the phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and two different-in-composition thermoresponsive amphiphilic block copolymers poly(N-isopropylacrylamide)-b-poly(lauryl acrylate) (PNIPAM-b-PLA) 1 or 2 were built by a conventional evaporation technique, followed by DSC, and chimeric liposomes of DPPC and PNIPAM-b-PLA 1 were developed and studied by DLS, after preparation and after a simple heating protocol. The results from both methodologies indicate the composition- and concentration-dependent lyotropic effect of the foreign copolymer molecule on the properties and functionality of the lipidic membrane.


Asunto(s)
Resinas Acrílicas/química , Nanoestructuras/química , Fosfolípidos/química , Termodinámica , Rastreo Diferencial de Calorimetría , Liposomas
10.
Polymers (Basel) ; 12(2)2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32028685

RESUMEN

Herein, poly[quaternized 2-(dimethylamino)ethyl methacrylate-b-lauryl methacrylate-b-(oligo ethylene glycol)methacrylate] (QPDMAEMA-b-PLMA-b-POEGMA) cationic amphiphilic triblock terpolymers were used as vehicles for the complexation/encapsulation of insulin (INS). The terpolymers self-assemble in spherical micelles with PLMA cores and mixed QPDMAEMA/POEGMA coronas in aqueous solutions. The cationic micelles were complexed via electrostatic interactions with INS, which contains anionic charges at pH 7. The solutions were colloidally stable in all INS ratios used. Light-scattering techniques were used for investigation of the complexation ability and the size and surface charge of the terpolymer/INS complexes. The results showed that the size of the complexes increases as INS ratio increases, while at the same time the surface charge remains positive, indicating the formation of clusters of micelles/INS complexes in the solution. Fluorescence spectroscopy measurements revealed that the conformation of the protein is not affected after the complexation with the terpolymer micellar aggregates. It was observed that as the solution ionic strength increases, the size of the QPDMAEMA-b-PLMA-b-POEGMA/INS complexes initially decreases and then remains practically constant at higher ionic strength, indicating further aggregation of the complexes. atomic force microscopy (AFM) measurements showed the existence of both clusters and isolated nanoparticulate terpolymer/protein complexes.

11.
Langmuir ; 35(30): 9904-9911, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31282165

RESUMEN

Aggregation behavior of an amphiphilic diblock copolymer poly(lauryl acrylate)-block-poly(N-isopropylacrylamide) (PLA-b-PNIPAM) on neutral aqueous subphases with different salt species and salt concentrations, as well as the structures of its Langmuir-Blodgett (LB) films, were systematically studied. The presence of NaCl or Na2SO4 in subphases makes PNIPAM chains shrink on the water surface and reduce their solubility underwater. On the contrary, the presence of NaNO3 or NaSCN makes PNIPAM chains more stretched on water and increase their solubility underwater, whose stretch degree and solubility both increase with the increase of salt concentration. Solubility of PNIPAM chains in the above subphase solutions is ranked as NaSCN ≫ NaNO3 > pure H2O > NaCl ≈ Na2SO4, which is almost consistent with the Hofmeister series except for the latter two close cases. All the initial LB films of PLA-b-PNIPAM exhibit tiny isolated circular micelles. Upon compression, the LB films in the case of pure H2O exhibit the dense mixed structures of circular micelles and wormlike aggregates. The formation of wormlike aggregates is due to connection of some adjoining cores, which is less possible in other subphase cases because of the conformation difference of PNIPAM chains.

12.
Polymers (Basel) ; 10(1)2017 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-30966050

RESUMEN

We report here on the utilization of poly(lauryl methacrylate)-b-poly(oligo ethylene glycol methacrylate) (PLMA-b-POEGMA) amphiphilic block copolymers, which form compound micelles in aqueous solutions, as nanocarriers for the encapsulation of either magnetic iron oxide nanoparticles or iron oxide nanoparticles, and the model hydrophobic drug indomethacin in the their hydrophobic core. The mixed nanostructures were characterized using dynamic light scattering (DLS) and transmission electron microscopy (TEM) in terms of their structure and solution properties. Magnetophoresis experiments showed that the mixed solutions maintain the magnetic properties of the initial iron oxide nanoparticles. Results indicate that the cumulative hydrophilic/hydrophobic balance of all components determines the colloidal stability of the nanosystems. The effect of salt and bovine serum albumin (BSA) protein concentration on the structure of the mixed nanostructures was also investigated. Disintegration of the mixed nanostructures was observed in both cases, showing the importance of these parameters in the structure formation and stability of such complex mixed nanosystems.

13.
Eur J Pharm Biopharm ; 107: 295-309, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27519828

RESUMEN

Chimeric systems are mixed nanovectors composed by different in nature materials and exhibit new functionalities and properties. The particular chimeric nanovectors, formed by the co-assembly of low and high molecular weight amphiphiles, have the potential to be utilized as drug delivery platforms. We have utilized two lipids, l-α-phosphatidylcholine, hydrogenated (Soy)(HSPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and a poly(oligoethylene glycol acrylate)-b-poly(lauryl acrylate) (POEGA-PLA) block copolymer, at different molar ratios, in aqueous media. Light scattering, differential scanning calorimetry (DSC) and imaging techniques (cryo-TEM, AFM) were employed in order to elucidate the structure and properties of the nanostructures, as well as the cooperativity between the components. DSC experiments showed considerable interaction of the block copolymer with the lipid bilayers and suggested an inhomogeneous distribution of the copolymer chains and lateral phase separation of the components. Vesicle formation was observed in most cases by cryo-TEM with a chimeric membrane exhibiting kinks, in accordance with DSC data. A series of biocompatibility experiments indicated good in vitro biological stability and low cytotoxicity in vivo of the novel nanocarriers. Finally, ibuprofen (IBU) was used as model drug in order to study the loading and the release properties of the prepared chimeric lipid/block copolymer vesicles.


Asunto(s)
Materiales Biocompatibles , Nanoestructuras/química , Fosfolípidos/química , Polímeros/química , Animales , Rastreo Diferencial de Calorimetría , Células Cultivadas , Humanos , Técnicas In Vitro , Membrana Dobles de Lípidos/química , Ratones , Ratones Endogámicos C57BL , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Fosfolípidos/farmacocinética , Fosfolípidos/toxicidad , Polímeros/farmacocinética , Polímeros/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA