Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1772(5): 570-9, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17382524

RESUMEN

The sarcoglycan complex in muscle consists of alpha-, beta-, gamma- and delta-sarcoglycan and is part of the larger dystrophin-glycoprotein complex (DGC), which is essential for maintaining muscle membrane integrity. Mutations in any of the four sarcoglycans cause limb-girdle muscular dystrophies (LGMD). In this report, we have identified a novel interaction between delta-sarcoglycan and the 16 kDa subunit c (16K) of vacuolar H(+)-ATPase. Co-expression studies in heterologous cell system revealed that 16K interacts specifically with delta-sarcoglycan and the highly related gamma-sarcoglycan through the transmembrane domains. In cultured C2C12 myotubes, 16K forms a complex with sarcoglycans at the plasma membrane. Loss of sarcoglycans in the sarcoglycan-deficient BIO14.6 hamster destabilizes the DGC and alters the localization of 16K at the sarcolemma. In addition, the steady state level of beta(1)-integrin is increased. Recent studies have shown that 16K also interacts directly with beta(1)-integrin and our data demonstrated that sarcoglycans, 16K and beta(1)-integrin were immunoprecipitated together in C2C12 myotubes. Since sarcoglycans have been proposed to participate in bi-directional signaling with integrins, our findings suggest that 16K might mediate the communication between sarcoglycans and integrins and play an important role in the pathogenesis of muscular dystrophy.


Asunto(s)
Sarcoglicanos/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Cricetinae , Integrina beta1/metabolismo , Masculino , Ratones , Microscopía Inmunoelectrónica , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/metabolismo , Unión Proteica , Subunidades de Proteína/metabolismo , Sarcolema/metabolismo , Sarcolema/ultraestructura , Transducción de Señal
2.
Cell Microbiol ; 8(6): 939-60, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16681836

RESUMEN

After internalization into macrophages non-pathogenic mycobacteria are killed within phagosomes. Pathogenic mycobacteria can block phagosome maturation and grow inside phagosomes but under some conditions can also be killed by macrophages. Killing mechanisms are poorly understood, although phago-lysosome fusion and nitric oxide (NO) production are implicated. We initiated a systematic analysis addressing how macrophages kill 'non-pathogenic'Mycobacterium smegmatis. This system was dynamic, involving periods of initial killing, then bacterial multiplication, followed by two additional killing stages. NO synthesis represented the earliest killing factor but its synthesis stopped during the first killing period. Phagosome actin assembly and fusion with late endocytic organelles coincided with the first and last killing phase, while recycling of phagosome content and membrane coincided with bacterial growth. Phagosome acidification and acquisition of the vacuolar (V) ATPase followed a different pattern coincident with later killing phases. Moreover, V-ATPase localized to vesicles distinct from classical late endosomes and lysosomes. Map kinase p38 is a crucial regulator of all processes investigated, except NO synthesis, that facilitated the host for some functions while being usurped by live bacteria for others. A mathematical model argues that periodic high and low cellular killing activity is more effective than is a continuous process.


Asunto(s)
Macrófagos/microbiología , Macrófagos/fisiología , Viabilidad Microbiana , Mycobacterium smegmatis/fisiología , Actinas/análisis , Actinas/metabolismo , Animales , Muerte Celular , Línea Celular , Supervivencia Celular , Endosomas/fisiología , Inhibidores Enzimáticos/farmacología , Concentración de Iones de Hidrógeno , Lisosomas/enzimología , Lisosomas/fisiología , Macrólidos/farmacología , Macrófagos/citología , Ratones , Modelos Teóricos , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/patogenicidad , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/fisiología , Orgánulos/fisiología , Fagosomas/química , Fagosomas/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
3.
J Biol Chem ; 279(51): 53007-14, 2004 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-15466867

RESUMEN

Vacuolar H(+)-ATPase functions as a vacuolar proton pump and is responsible for acidification of intracellular compartments such as the endoplasmic reticulum, Golgi, lysosomes, and endosomes. Previous reports have demonstrated that a 16-kDa subunit (16K) of vacuolar H(+)-ATPase via one of its transmembrane domains, TMD4, strongly associates with beta(1) integrin, affecting beta(1) integrin N-linked glycosylation and inhibiting its function as a matrix adhesion receptor. Because of this dramatic inhibition of beta(1) integrin-mediated HEK-293 cell motility by 16K expression, we investigated the mechanism by which 16 kDa was having this effect. Using HT1080 cells whose alpha(5)beta(1) integrin-mediated adhesion to fibronectin has been extensively studied, the expression of 16 kDa also resulted in reduced cell spreading on fibronectin-coated substrates. A pulse-chase study of beta(1) integrin biosynthesis indicated that 16K expression down-regulated the level of the 110-kDa biosynthetic form of beta(1) integrin (premature form) and, consequently, the level of the 130-kDa form of beta(1) integrin (mature form). Further experiments showed that the normal levels of association between the premature beta(1) integrin form and calnexin were significantly decreased by the expression of either 16 kDa or TMD4. Expression of 16 kDa also resulted in a Triton X-100-insoluble aggregation of an unusual 87-kDa form of beta(1) integrin. Interestingly, both Western blotting and a pulse-chase experiment showed co-immunoprecipitation of calnexin and 16K. These results indicate that 16K expression inhibits beta(1) integrin surface expression and spreading on matrix by a novel mechanism that results in reduced levels of functional beta(1) integrin.


Asunto(s)
Membrana Celular/metabolismo , Detergentes/farmacología , Integrina beta1/metabolismo , Octoxinol/farmacología , ATPasas de Translocación de Protón Vacuolares/biosíntesis , ATPasas de Translocación de Protón Vacuolares/química , Biotinilación , Western Blotting , Calnexina/metabolismo , Calnexina/farmacología , Adhesión Celular , Línea Celular , Movimiento Celular , Disulfuros/química , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Fibronectinas/metabolismo , Glicosilación , Aparato de Golgi/metabolismo , Humanos , Inmunoprecipitación , Integrina beta1/química , Cinética , Lisosomas/metabolismo , Microscopía Fluorescente , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Protones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...