Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Genes (Basel) ; 15(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38790223

RESUMEN

Rett Syndrome (RTT) is a severe neurodevelopmental disorder predominately diagnosed in females and primarily caused by pathogenic variants in the X-linked gene Methyl-CpG Binding Protein 2 (MECP2). Most often, the disease causing the MECP2 allele resides on the paternal X chromosome while a healthy copy is maintained on the maternal X chromosome with inactivation (XCI), resulting in mosaic expression of one allele in each cell. Preferential inactivation of the paternal X chromosome is theorized to result in reduced disease severity; however, establishing such a correlation is complicated by known MECP2 genotype effects and an age-dependent increase in severity. To mitigate these confounding factors, we developed an age- and genotype-normalized measure of RTT severity by modeling longitudinal data collected in the US Rett Syndrome Natural History Study. This model accurately reflected individual increase in severity with age and preserved group-level genotype specific differences in severity, allowing for the creation of a normalized clinical severity score. Applying this normalized score to a RTT XCI dataset revealed that XCI influence on disease severity depends on MECP2 genotype with a correlation between XCI and severity observed only in individuals with MECP2 variants associated with increased clinical severity. This normalized measure of RTT severity provides the opportunity for future discovery of additional factors contributing to disease severity that may be masked by age and genotype effects.


Asunto(s)
Proteína 2 de Unión a Metil-CpG , Síndrome de Rett , Índice de Severidad de la Enfermedad , Inactivación del Cromosoma X , Síndrome de Rett/genética , Síndrome de Rett/patología , Inactivación del Cromosoma X/genética , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Femenino , Niño , Cromosomas Humanos X/genética , Genotipo , Preescolar , Adolescente , Adulto , Masculino , Alelos , Adulto Joven
2.
Biomedicines ; 12(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38790952

RESUMEN

Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders (NDDs) with a high unmet medical need. The diagnosis of ASD is currently based on behavior criteria, which overlooks the diversity of genetic, neurophysiological, and clinical manifestations. Failure to acknowledge such heterogeneity has hindered the development of efficient drug treatments for ASD and other NDDs. DEPI® (Databased Endophenotyping Patient Identification) is a systems biology, multi-omics, and machine learning-driven platform enabling the identification of subgroups of patients with NDDs and the development of patient-tailored treatments. In this study, we provide evidence for the validation of a first clinically and biologically defined subgroup of patients with ASD identified by DEPI, ASD Phenotype 1 (ASD-Phen1). Among 313 screened patients with idiopathic ASD, the prevalence of ASD-Phen1 was observed to be ~24% in 84 patients who qualified to be enrolled in the study. Metabolic and transcriptomic alterations differentiating patients with ASD-Phen1 were consistent with an over-activation of NF-κB and NRF2 transcription factors, as predicted by DEPI. Finally, the suitability of STP1 combination treatment to revert such observed molecular alterations in patients with ASD-Phen1 was determined. Overall, our results support the development of precision medicine-based treatments for patients diagnosed with ASD.

3.
Am J Med Genet A ; : e63725, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775384

RESUMEN

Typical (or classic) Rett syndrome (RTT) is an X-linked neurodevelopmental disorder characterized by a period of regression, partial or complete loss of purposeful hand movements, and acquired speech, impaired gait, and stereotyped hand movements. In over 95% of typical RTT, a pathogenic variant is found in the methyl-CPG binding protein 2 gene (MECP2). Here, we describe a young woman with clinically diagnosed typical RTT syndrome who lacked a genetic diagnosis despite 20 years of investigation and multiple rounds of sequencing the MECP2 gene. Recently, additional genetic testing using next-generation sequencing was completed, which revealed a partial insertion of the BCL11A gene within exon 4 of MECP2, resulting in a small deletion in MECP2, causing likely disruption of MeCP2 function due to a frameshift. This case demonstrates the ever-changing limitations of genetic testing, as well as the importance of continual pursuit of a diagnosis as technologies improve and are more widely utilized.

4.
Nat Immunol ; 25(5): 778-789, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589619

RESUMEN

Natural killer (NK) cells are a critical first line of defense against viral infection. Rare mutations in a small subset of transcription factors can result in decreased NK cell numbers and function in humans, with an associated increased susceptibility to viral infection. However, our understanding of the specific transcription factors governing mature human NK cell function is limited. Here we use a non-viral CRISPR-Cas9 knockout screen targeting genes encoding 31 transcription factors differentially expressed during human NK cell development. We identify myocyte enhancer factor 2C (MEF2C) as a master regulator of human NK cell functionality ex vivo. MEF2C-haploinsufficient patients and mice displayed defects in NK cell development and effector function, with an increased susceptibility to viral infection. Mechanistically, MEF2C was required for an interleukin (IL)-2- and IL-15-mediated increase in lipid content through regulation of sterol regulatory element-binding protein (SREBP) pathways. Supplementation with oleic acid restored MEF2C-deficient and MEF2C-haploinsufficient patient NK cell cytotoxic function. Therefore, MEF2C is a critical orchestrator of NK cell antiviral immunity by regulating SREBP-mediated lipid metabolism.


Asunto(s)
Células Asesinas Naturales , Metabolismo de los Lípidos , Factores de Transcripción MEF2 , Factores de Transcripción MEF2/metabolismo , Factores de Transcripción MEF2/genética , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Animales , Humanos , Ratones , Sistemas CRISPR-Cas , Ratones Noqueados , Interleucina-15/metabolismo , Ratones Endogámicos C57BL
6.
J Mol Diagn ; 26(3): 213-226, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211722

RESUMEN

Optical genome mapping is a high-resolution technology that can detect all types of structural variations in the genome. This second phase of a multisite study compares the performance of optical genome mapping and current standard-of-care methods for diagnostic testing of individuals with constitutional disorders, including neurodevelopmental impairments and congenital anomalies. Among the 627 analyses in phase 2, 405 were of retrospective samples supplied by five diagnostic centers in the United States and 94 were prospective samples collected over 18 months by two diagnostic centers (June 2021 to October 2022). Additional samples represented a family cohort to determine inheritance (n = 119) and controls (n = 9). Full concordance of results between optical genome mapping and one or more standard-of-care diagnostic tests was 98.6% (618/627), with partial concordance in an additional 1.1% (7/627).


Asunto(s)
Estudios Prospectivos , Humanos , Mapeo Cromosómico , Estudios Retrospectivos , Recién Nacido
7.
Genet Med ; 26(5): 101075, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38251460

RESUMEN

PURPOSE: This study aims to assess the diagnostic utility and provide reporting recommendations for clinical DNA methylation episignature testing based on the cohort of patients tested through the EpiSign Clinical Testing Network. METHODS: The EpiSign assay utilized unsupervised clustering techniques and a support vector machine-based classification algorithm to compare each patient's genome-wide DNA methylation profile with the EpiSign Knowledge Database, yielding the result that was reported. An international working group, representing distinct EpiSign Clinical Testing Network health jurisdictions, collaborated to establish recommendations for interpretation and reporting of episignature testing. RESULTS: Among 2399 cases analyzed, 1667 cases underwent a comprehensive screen of validated episignatures, imprinting, and promoter regions, resulting in 18.7% (312/1667) positive reports. The remaining 732 referrals underwent targeted episignature analysis for assessment of sequence or copy-number variants (CNVs) of uncertain significance or for assessment of clinical diagnoses without confirmed molecular findings, and 32.4% (237/732) were positive. Cases with detailed clinical information were highlighted to describe various utility scenarios for episignature testing. CONCLUSION: Clinical DNA methylation testing including episignatures, imprinting, and promoter analysis provided by an integrated network of clinical laboratories enables test standardization and demonstrates significant diagnostic yield and clinical utility beyond DNA sequence analysis in rare diseases.


Asunto(s)
Metilación de ADN , Pruebas Genéticas , Enfermedades Raras , Humanos , Metilación de ADN/genética , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Pruebas Genéticas/normas , Pruebas Genéticas/métodos , Femenino , Regiones Promotoras Genéticas/genética , Masculino , Variaciones en el Número de Copia de ADN/genética , Niño , Adulto , Preescolar , Impresión Genómica/genética
8.
Am J Med Genet A ; 194(2): 160-173, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37768187

RESUMEN

Rett syndrome (RTT) is a progressive neurodevelopmental disorder, and pathogenic Methyl-CpG-binding Protein 2 (MECP2) variants are identified in >95% of individuals with typical RTT. Most of RTT-causing variants in MECP2 are de novo and usually on the paternally inherited X chromosome. While paternal age has been reported to be associated with increased risk of genetic disorders, it is unknown whether parental age contributes to the risk of the development of RTT. Clinical data including parental age, RTT diagnostic status, and clinical severity are collected from 1226 participants with RTT and confirmed MECP2 variants. Statistical analyses are performed using Student t-test, single factor analysis of variance (ANOVA), and multi-factor regression. No significant difference is observed in parental ages of RTT probands compared to that of the general population. A small increase in parental ages is observed in participants with missense variants compared to those with nonsense variants. When we evaluate the association between clinical severity and parental ages by multiple regression analysis, there is no clear association between clinical severity and parental ages. Advanced parental ages do not appear to be a risk factor for RTT, and do not contribute to the clinical severity in individuals with RTT.


Asunto(s)
Síndrome de Rett , Humanos , Síndrome de Rett/diagnóstico , Síndrome de Rett/epidemiología , Síndrome de Rett/genética , Mutación , Proteína 2 de Unión a Metil-CpG/genética , Cromosomas Humanos X , Padres
10.
Am J Hum Genet ; 110(11): 1959-1975, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37883978

RESUMEN

Valosin-containing protein (VCP) is an AAA+ ATPase that plays critical roles in multiple ubiquitin-dependent cellular processes. Dominant pathogenic variants in VCP are associated with adult-onset multisystem proteinopathy (MSP), which manifests as myopathy, bone disease, dementia, and/or motor neuron disease. Through GeneMatcher, we identified 13 unrelated individuals who harbor heterozygous VCP variants (12 de novo and 1 inherited) associated with a childhood-onset disorder characterized by developmental delay, intellectual disability, hypotonia, and macrocephaly. Trio exome sequencing or a multigene panel identified nine missense variants, two in-frame deletions, one frameshift, and one splicing variant. We performed in vitro functional studies and in silico modeling to investigate the impact of these variants on protein function. In contrast to MSP variants, most missense variants had decreased ATPase activity, and one caused hyperactivation. Other variants were predicted to cause haploinsufficiency, suggesting a loss-of-function mechanism. This cohort expands the spectrum of VCP-related disease to include neurodevelopmental disease presenting in childhood.


Asunto(s)
Enfermedades Musculares , Trastornos del Neurodesarrollo , Adulto , Humanos , Proteína que Contiene Valosina/genética , Hipotonía Muscular , Mutación Missense/genética
11.
J Bone Miner Res ; 38(5): 692-706, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36896612

RESUMEN

Lethal short-limb skeletal dysplasia Al-Gazali type (OMIM %601356), also called dysplastic cortical hyperostosis, Al-Gazali type, is an ultra-rare disorder previously reported in only three unrelated individuals. The genetic etiology for Al-Gazali skeletal dysplasia has up until now been unknown. Through international collaborative efforts involving seven clinical centers worldwide, a cohort of nine patients with clinical and radiographic features consistent with short-limb skeletal dysplasia Al-Gazali type was collected. The affected individuals presented with moderate intrauterine growth restriction, relative macrocephaly, hypertrichosis, large anterior fontanelle, short neck, short and stiff limbs with small hands and feet, severe brachydactyly, and generalized bone sclerosis with mild platyspondyly. Biallelic disease-causing variants in ADAMTSL2 were detected using massively parallel sequencing (MPS) and Sanger sequencing techniques. Six individuals were compound heterozygous and one individual was homozygous for pathogenic variants in ADAMTSL2. In one of the families, pathogenic variants were detected in parental samples only. Overall, this study sheds light on the genetic cause of Al-Gazali skeletal dysplasia and identifies it as a semi-lethal part of the spectrum of ADAMTSL2-related disorders. Furthermore, we highlight the importance of meticulous analysis of the pseudogene region of ADAMTSL2 where disease-causing variants might be located. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Enfermedades del Desarrollo Óseo , Deformidades Congénitas de las Extremidades , Osteocondrodisplasias , Humanos , Enfermedades del Desarrollo Óseo/genética , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/patología , Osteocondrodisplasias/genética , Huesos/patología , Homocigoto , Proteínas ADAMTS/genética
12.
Eur J Med Genet ; 66(1): 104670, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36414205

RESUMEN

BACKGROUND: Since the first description of a BRWD3-associated nonsydromic intellectual disability (ID) disorder in 2007, 21 additional families have been reported in the literature. METHODS: Using exome sequencing (ES) and international data sharing, we identified 14 additional unrelated individuals with pathogenic BRWD3 variants (12 males and 2 females, including one with skewed X-inactivation). We reviewed the 31 previously published cases in the literature with clinical data available, and describe the collective phenotypes of 43 males and 2 females, with 33 different BRWD3 variants. RESULTS: The most common features in males (excluding one patient with a mosaic variant) included ID (39/39 males), speech delay (24/25 males), postnatal macrocephaly (28/35 males) with prominent forehead (18/25 males) and large ears (14/26 males), and obesity (12/27 males). Both females presented with macrocephaly, speech delay, and epilepsy, while epilepsy was only observed in 4/41 males. Among the 28 variants with available segregation reported, 19 were inherited from unaffected mothers and 9 were de novo. CONCLUSION: This study demonstrates that the BRWD3-related phenotypes are largely non-specific, leading to difficulty in clinical recognition of this disorder. A genotype-first approach, however, allows for the more efficient diagnosis of the BRWD3-related nonsyndromic ID. The refined clinical features presented here may provide additional diagnostic assistance for reverse phenotyping efforts.


Asunto(s)
Discapacidad Intelectual , Trastornos del Desarrollo del Lenguaje , Megalencefalia , Masculino , Femenino , Humanos , Quinasas Janus/genética , Quinasas Janus/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Discapacidad Intelectual/genética , Síndrome , Megalencefalia/genética , Fenotipo , Mutación , Factores de Transcripción/genética
13.
Genet Med ; 25(1): 63-75, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36399132

RESUMEN

PURPOSE: Witteveen-Kolk syndrome (WITKOS) is a rare, autosomal dominant neurodevelopmental disorder caused by heterozygous loss-of-function alterations in the SIN3A gene. WITKOS has variable expressivity that commonly overlaps with other neurodevelopmental disorders. In this study, we characterized a distinct DNA methylation epigenetic signature (episignature) distinguishing WITKOS from unaffected individuals as well as individuals with other neurodevelopmental disorders with episignatures and described 9 previously unpublished individuals with SIN3A haploinsufficiency. METHODS: We studied the phenotypic characteristics and the genome-wide DNA methylation in the peripheral blood samples of 20 individuals with heterozygous alterations in SIN3A. A total of 14 samples were used for the identification of the episignature and building of a predictive diagnostic biomarker, whereas the diagnostic model was used to investigate the methylation pattern of the remaining 6 samples. RESULTS: A predominantly hypomethylated DNA methylation profile specific to WITKOS was identified, and the classifier model was able to diagnose a previously unresolved test case. The episignature was sensitive enough to detect individuals with varying degrees of phenotypic severity carrying SIN3A haploinsufficient variants. CONCLUSION: We identified a novel, robust episignature in WITKOS due to SIN3A haploinsufficiency. This episignature has the potential to aid identification and diagnosis of individuals with WITKOS.


Asunto(s)
Metilación de ADN , Trastornos del Neurodesarrollo , Humanos , Metilación de ADN/genética , Haploinsuficiencia/genética , Trastornos del Neurodesarrollo/genética , Genoma
14.
Hum Mol Genet ; 32(9): 1457-1465, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36458889

RESUMEN

Mosaic variants in the PIK3CA gene, encoding the catalytic subunit of phosphoinositide 3-kinase (PI3K), produce constitutive PI3K activation, which causes PIK3CA-related overgrowth spectrum disorders. To date, fewer than 20 patients have been described with germline alterations in PIK3CA. In this study, we describe three unrelated individuals with overgrowth and germline PIK3CA variants. These variants were discovered through whole-exome sequencing and confirmed as germline by testing multiple tissue types, when available. Functional analysis using Patient 1's fibroblast cell line and two previously reported patients' cell lines showed increased phosphorylation of AKT during cellular starvation revealing constitutive activation of the phosphoinositide-3-kinase/protein kinase B/mechanistic target of rapamycin (PI3K/AKT/mTOR) pathway. Alternatively, stimulation of the cells by fetal bovine serum produced a reduced response, indicating an activated status of the PI3K complex reducing the pathway response to further external stimulation. Additional studies utilizing Biolog Phenotype Microarray technology indicated reduced energy production when cells were exposed to growth factors stimulating the PI3K/AKT/mTOR pathway, confirming the trend observed in the AKT phosphorylation test after stimulation. Furthermore, treatment with inhibitors of the PI3K/AKT/mTOR pathway rescued the normal energy response in the patients' cells. Collectively, these data demonstrate that disease-causing germline PIK3CA variants have a functional consequence, similar to mosaic variants in the PI3K/AKT/mTOR pathway.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Enfermedades Genéticas Congénitas , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Células Germinativas/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/fisiopatología , Mutación de Línea Germinal , Fosforilación
15.
Ann Child Neurol Soc ; 1(3): 228-238, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38496825

RESUMEN

Objective: To determine the longitudinal distribution of hand function skills in individuals with classic Rett Syndrome (RTT), an X-linked dominant neurodevelopmental disorder, and correlate with MECP2 variants. Method: We conducted a longitudinal study of 946 girls and young women with typical RTT seen between 2006 and 2021 in the US Natural History Study (NHS) featuring a structured clinical evaluation to assess the level of hand function skills. The specific focus in this study was to assess longitudinal variation of hand skills from age 2 through age 18 years in relation to specific MECP2 variant groups. Results: Following the initial regression period, hand function continues to decline across the age spectrum in individuals with RTT. Specific differences are noted with steeper declines in hand function among those with milder variants (Group A: R133C, R294X, R306C, and C-terminal truncations) compared to groups composed of individuals with more severe variants. Conclusions: These temporal variations in hand use represent specific considerations which could influence the design of clinical trials that test therapies aiming to ameliorate specific functional limitations in individuals with RTT. Furthermore, the distinct impact of specific MECP2 variants on clinical severity, especially related to hand use, should be considered in such interventional trials.

16.
Mol Genet Genomic Med ; 10(6): e1919, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35416405

RESUMEN

INTRODUCTION: MEF2C-related disorders are characterized by developmental and cognitive delay, limited language and walking, hypotonia, and seizures. A recent systematic review identified 117 patients with MEF2C-related disorders across 43 studies. Despite these reports, the disorder is not easily recognized and assessments are hampered by small sample sizes. Our objective was to gather developmental and clinical information on a large number of patients. METHODS: We developed a survey based on validated instruments and subject area experts to gather information from parents of children with this condition. No personal identifiers were collected. Surveys and data were collected via REDCap and analyzed using Excel and SAS v9.4. RESULTS: Seventy-three parents completed the survey, with 39.7% reporting a MEF2C variant and 54.8% reporting a deletion involving MEF2C. Limited speech (82.1%), seizures (86.3%), bruxism (87.7%), repetitive movements (94.5%), and high pain tolerance (79.5%) were some of the prominent features. Patients with MEF2C variants were similarly affected as those with deletions. Female subjects showed higher verbal abilities. CONCLUSION: This is the largest natural history study to date and establishes a comprehensive review of developmental and clinical features for MEF2C-related disorders. This data can help providers diagnose patients and form the basis for longitudinal or genotype-phenotype studies.


Asunto(s)
Discapacidad Intelectual , Femenino , Humanos , Discapacidad Intelectual/genética , Factores de Transcripción MEF2/genética , Hipotonía Muscular/genética , Fenotipo , Convulsiones/genética
17.
J Pediatr ; 244: 169-177.e3, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35063470

RESUMEN

OBJECTIVE: To characterize growth and anthropometric measurements in females with Rett syndrome and compare these measurements with functional outcomes. STUDY DESIGN: We obtained longitudinal growth and anthropometric measurements from 1154 females with classic and atypical Rett syndrome seen between 2006 and 2019 in the US Natural History Study. We calculated the Clinical Severity Score, Motor Behavior Assessment score, and arm and leg muscle areas and recorded the functional assessments of arm and hand use and ambulation. We compared growth and anthropometric variables from females with Rett syndrome in regard to normative data. We analyzed Clinical Severity Score, Motor Behavior Assessment, and anthropometric measurements in regard to functional assessments. RESULTS: Growth and anthropometric measurements were significantly lower in females with classic and severe atypical Rett syndrome compared with those classified as mild atypical Rett syndrome and deviated from normative patterns among all 3 groups. Suprailiac skinfold measurements correlated with body mass index measurements in each group. Lower leg muscle area measurements were significantly greater among females in all 3 Rett syndrome groups who ambulated independently compared with those who did not. In females with classic Rett syndrome, arm, thigh, and lower leg muscle area measurements increased significantly over time and were significantly greater among those who had purposeful arm and hand use and independent ambulation compared with those who did not. CONCLUSIONS: The pattern of growth and anthropometric measures in females with Rett syndrome differs from normative data and demonstrates clear differences between classic and mild or severe atypical Rett syndrome. Anthropometric measures correspond with functional outcomes and could provide markers supporting efficacy outcomes in clinical trials.


Asunto(s)
Síndrome de Rett , Antropometría , Femenino , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG , Caminata/fisiología
18.
Eur J Hum Genet ; 30(4): 420-427, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34992252

RESUMEN

ZNF711 is one of eleven zinc-finger genes on the X chromosome that have been associated with X-linked intellectual disability. This association is confirmed by the clinical findings in 20 new cases in addition to 11 cases previously reported. No consistent growth aberrations, craniofacial dysmorphology, malformations or neurologic findings are associated with alterations in ZNF711. The intellectual disability is typically mild and coexisting autism occurs in half of the cases. Carrier females show no manifestations. A ZNF711-specific methylation signature has been identified which can assist in identifying new cases and in confirming the pathogenicity of variants in the gene.


Asunto(s)
Trastorno Autístico , Discapacidad Intelectual , Trastorno Autístico/genética , Metilación de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Genes Ligados a X , Humanos , Discapacidad Intelectual/genética
19.
Pediatr Neurol ; 123: 30-37, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34388423

RESUMEN

BACKGROUND: Adequate sleep is important for proper neurodevelopment and positive health outcomes. Sleep disturbances are more prevalent in children with genetically determined neurodevelopmental syndromes compared with typically developing counterparts. We characterize sleep behavior in Rett (RTT), Angelman (AS), and Prader-Willi (PWS) syndromes to identify effective approaches for treating sleep problems in these populations. We compared sleep-related symptoms across individuals with these different syndromes with each other, and with typically developing controls. METHODS: Children were recruited from the Rare Diseases Clinical Research Network consortium registries; unaffected siblings were enrolled as related controls. For each participant, a parent completed multiple sleep questionnaires including Pediatric Sleep Questionnaire (Sleep-Disordered Breathing), Children's Sleep Habits Questionnaire (CSHQ), and Pediatric Daytime Sleepiness Scale. RESULTS: Sleep data were analyzed from 714 participants, aged two to 18 years. Young children with AS had more reported sleep problems than children with RTT or PWS. Older children with RTT had more reported daytime sleepiness than those with AS or PWS. Finally, all individuals with RTT had more evidence of sleep-disordered breathing when compared with individuals with PWS. Notably, typically developing siblings were also reported to have sleep problems, except for sleep-related breathing disturbances, which were associated with each of the genetic syndromes. CONCLUSIONS: Individuals with RTT, AS, and PWS frequently experience sleep problems, including sleep-disordered breathing. Screening for sleep problems in individuals with these and other neurogenetic disorders should be included in clinical assessment and managements. These data may also be useful in developing treatment strategies and in clinical trials.


Asunto(s)
Síndrome de Angelman/fisiopatología , Trastornos del Neurodesarrollo/fisiopatología , Síndrome de Prader-Willi/fisiopatología , Síndrome de Rett/fisiopatología , Trastornos del Sueño-Vigilia/diagnóstico , Trastornos del Sueño-Vigilia/fisiopatología , Adolescente , Síndrome de Angelman/complicaciones , Niño , Preescolar , Humanos , Trastornos del Neurodesarrollo/complicaciones , Síndrome de Prader-Willi/complicaciones , Enfermedades Raras , Síndrome de Rett/complicaciones , Trastornos del Sueño-Vigilia/etiología
20.
Am J Med Genet A ; 185(12): 3884-3894, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34184825

RESUMEN

MEF2C-related disorders (aka MEF2C-haploinsufficiency) are caused by variations in or involving the MEF2C gene and are characterized by intellectual disability, developmental delay, lack of speech, limited walking, and seizures. Despite these findings, the disorder is not easily recognized clinically. We performed a systematic review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to assemble the most comprehensive list of patients and their phenotypes. Through searching PubMed, Web of Science, and MEDLINE, 43 articles met the inclusion criteria and were fully reviewed. One hundred and seventeen patients were identified from these publications with most having a phenotype of intellectual disability, developmental delay, seizures, hypotonia, absent speech, inability to walk, stereotypic movements, and MRI abnormalities. Nonclassical findings included one patient with a question mark ear, two patients with a jugular pit, one patient with a unique neuroendocrine finding, and nine patients that did not have MEF2C deletions or disruptions but may be affected due to a positional effect on MEF2C. This systematic review characterizes the phenotype of MEF2C-related disorders, documents the severity of this condition, and will help providers to better diagnose and care for patients and their families. Additionally, this compiled information provides a comprehensive resource for investigators interested in pursuing specific genotype-phenotype correlations.


Asunto(s)
Epilepsia/genética , Haploinsuficiencia/genética , Discapacidad Intelectual/genética , Deleción Cromosómica , Epilepsia/patología , Predisposición Genética a la Enfermedad , Humanos , Discapacidad Intelectual/patología , Factores de Transcripción MEF2/deficiencia , Factores de Transcripción MEF2/genética , Hipotonía Muscular/genética , Hipotonía Muscular/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA