Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Immun Ageing ; 20(1): 45, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653480

RESUMEN

BACKGROUND: Fatty degeneration of thymus (or thymus involution) has long been considered a normal ageing process. However, there is emerging evidence that thymic involution is linked to T cell aging, chronic inflammation and increased morbidity. Other factors, aside from chronological age, have been proposed to affect the involution rate. In the present study, we investigated the imaging characteristics of thymus on computed tomography (CT) in a Swedish middle-aged population. The major aims were to establish the prevalence of fatty degeneration of thymus and to determine its associations with demographic, lifestyle and clinical factors, as well as inflammation, T cell differentiation and thymic output. RESULTS: In total, 1 048 randomly invited individuals (aged 50-64 years, 49% females) were included and thoroughly characterized. CT evaluation of thymus included measurements of attenuation, size and a 4-point scoring system, with scale 0-3 based on the ratio of fat and soft tissue. A majority, 615 (59%) showed complete fatty degeneration, 259 (25%) predominantly fatty attenuation, 105 (10%) half fatty and half soft-tissue attenuation, while 69 (6.6%) presented with a solid thymic gland with predominantly soft-tissue attenuation. Age, male sex, high BMI, abdominal obesity and low dietary intake of fiber were independently associated with complete fatty degeneration of thymus. Also, fatty degeneration of thymus as well as low CT attenuation values were independently related to lower proportion of naïve CD8+ T cells, which in turn was related to lower thymic output, assessed by T-cell receptor excision circle (TREC) levels. CONCLUSION: Among Swedish middle-aged subjects, nearly two-thirds showed complete fatty degeneration of thymus on CT. This was linked to depletion of naïve CD8+ T cells indicating that CT scans of thymus might be used to estimate immunological aging. Furthermore, our findings support the intriguing concept that obesity as well as low fiber intake contribute to immunological aging, thereby raising the possibility of preventive strategies.

2.
Allergy Asthma Clin Immunol ; 19(1): 55, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386541

RESUMEN

Helminth/tuberculosis (TB)-coinfection can reduce cell-mediated immunity against Mycobacterium tuberculosis (Mtb) and increase disease severity, although the effects are highly helminth species dependent. Mtb have long been ranked as the number one single infectious agent claiming the most lives. The only licensed vaccine for TB (BCG) offers highly variable protection against TB, and almost no protection against transmission of Mtb. In recent few years the identification of naturally occurring antibodies in humans that are protective during Mtb infection has reignited the interest in adaptive humoral immunity against TB and its possible implementation in novel TB vaccine design. The effects of helminth/TB coinfection on the humoral response against Mtb during active pulmonary TB are however still unclear, and specifically the effect by globally prevalent helminth species such as Ascaris lumbricoides, Strongyloides stercoralis, Ancylostoma duodenale, Trichuris trichiura. Plasma samples from smear positive TB patients were used to measure both total and Mtb-specific antibody responses in a Peruvian endemic setting where these helminths are dominating. Mtb-specific antibodies were detected by a novel approach coating ELISA-plates with a Mtb cell-membrane fraction (CDC1551) that contains a broad range of Mtb surface proteins. Compared to controls without helminths or TB, helminth/TB coinfected patients had high levels of Mtb-specific IgG (including an IgG1 and IgG2 subclass response) and IgM, which were similarly increased in TB patients without helminth infection. These data, indicate that helminth/TB coinfected have a sustained humoral response against Mtb at the level of active TB only. More studies on the species-specific impact of helminths on the adaptive humoral response against Mtb using a larger sample size, and in relation to TB disease severity, are needed.

3.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35008989

RESUMEN

BACKGROUND: Enzymes of tricarboxylic acid (TCA) have recently been recognized as tumor suppressors. Mutations in the SDHB subunit of succinate dehydrogenase (SDH) cause pheochromocytomas and paragangliomas (PCCs/PGLs) and predispose patients to malignant disease with poor prognosis. METHODS: Using the human pheochromocytoma cell line (hPheo1), we knocked down SDHB gene expression using CRISPR-cas9 technology. RESULTS: Microarray gene expression analysis showed that >500 differentially expressed gene targets, about 54%, were upregulated in response to SDHB knock down. Notably, genes involved in glycolysis, hypoxia, cell proliferation, and cell differentiation were up regulated, whereas genes involved in oxidative phosphorylation (OXPHOS) were downregulated. In vitro studies show that hPheo1 proliferation is not affected negatively and the cells that survive by shifting their metabolism to the use of glutamine as an alternative energy source and promote OXPHOS activity. Knock down of SDHB expression results in a significant increase in GLUD1 expression in hPheo1 cells cultured as monolayer or as 3D culture. Analysis of TCGA data confirms the enhancement of GLUD1 in SDHB mutated/low expressed PCCs/PGLs. CONCLUSIONS: Our data suggest that the downregulation of SDHB in PCCs/PGLs results in increased GLUD1 expression and may represent a potential biomarker and therapeutic target in SDHB mutated tumors and SDHB loss of activity-dependent diseases.


Asunto(s)
Metabolismo Energético , Fosforilación Oxidativa , Succinato Deshidrogenasa/deficiencia , Biomarcadores , Sistemas CRISPR-Cas , Adhesión Celular , Línea Celular , Metabolismo Energético/genética , Dosificación de Gen , Edición Génica , Expresión Génica , Técnicas de Silenciamiento del Gen , Glucólisis , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Fenotipo
4.
Front Immunol ; 12: 628564, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211456

RESUMEN

Neutrophil extracellular traps (NETs) and mitochondrial DNA (mtDNA) are inflammatory mediators involved in the development of type 1 diabetes (T1D). Pancreas-infiltrating neutrophils can release NETs, contributing to the inflammatory process. Levels of NETs are increased in serum from patients with T1D and mtDNA is increased in adult T1D patients. Our aim was to investigate extracellular DNA (NETs, mtDNA and nuclear DNA) in children with newly diagnosed T1D and in children at high risk of the disease. We also elucidated if extracellular DNA short after diagnosis could predict loss of endogenous insulin production. Samples were analysed for mtDNA and nuclear DNA using droplet digital PCR and NETs were assessed by a NET-remnants ELISA. In addition, in vitro assays for induction and degradation of NETs, as well as analyses of neutrophil elastase, HLA genotypes, levels of c-peptide, IL-1beta, IFN and autoantibodies (GADA, IA-2A, IAA and ZnT8A) were performed. In serum from children 10 days after T1D onset there was an increase in NETs (p=0.007), mtDNA (p<0.001) and nuclear DNA (p<0.001) compared to healthy children. The elevated levels were found only in younger children. In addition, mtDNA increased in consecutive samples short after onset (p=0.017). However, levels of extracellular DNA short after onset did not reflect future loss of endogenous insulin production. T1D serum induced NETs in vitro and did not deviate in the ability to degrade NETs. HLA genotypes and autoantibodies, except for ZnT8A, were not associated with extracellular DNA in T1D children. Serum from children with high risk of T1D showed fluctuating levels of extracellular DNA, sometimes increased compared to healthy children. Therefore, extracellular DNA in serum from autoantibody positive high-risk children does not seem to be a suitable biomarker candidate for prediction of T1D. In conclusion, we found increased levels of extracellular DNA in children with newly diagnosed T1D, which might be explained by an ongoing systemic inflammation.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/sangre , ADN/sangre , Diabetes Mellitus Tipo 1/sangre , Trampas Extracelulares/metabolismo , Adolescente , Factores de Edad , Autoanticuerpos/sangre , Biomarcadores/sangre , Estudios de Casos y Controles , Niño , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Femenino , Humanos , Estudios Longitudinales , Masculino , Medición de Riesgo , Factores de Riesgo , Regulación hacia Arriba
5.
Front Microbiol ; 11: 1069, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32523583

RESUMEN

Mitochondria play crucial roles in cellular metabolism, signaling, longevity, and immune defense. Recent evidences have revealed that the host microbiota, including bacterial pathogens, impact mitochondrial behaviors and activities in the host. The pathogenicity of Pseudomonas aeruginosa requires quorum sensing (QS) cell-cell communication allowing the bacteria to sense population density and collectively control biofilm development, virulence traits, adaptation and interactions with the host. QS molecules, like N-3-oxo-dodecanoyl-L-homoserine lactone (3O-C12-HSL), can also modulate the behavior of host cells, e.g., epithelial barrier properties and innate immune responses. Here, in two types of cells, fibroblasts and intestinal epithelial cells, we investigated whether and how P. aeruginosa 3O-C12-HSL impacts the morphology of mitochondrial networks and their energetic characteristics, using high-resolution transmission electron microscopy, fluorescence live-cell imaging, assay for mitochondrial bioenergetics, and quantitative mass spectrometry for mitoproteomics and bioinformatics. We found that 3O-C12-HSL induced fragmentation of mitochondria, disruption of cristae and inner membrane ultrastructure, altered major characteristics of respiration and energetics, and decreased mitochondrial membrane potential, and that there are distinct cell-type specific details of these effects. Moreover, this was mechanistically accompanied by differential expression of both common and cell-type specific arrays of components in the mitochondrial proteome involved in their structural organization, electron transport chain complexes and response to stress. We suggest that this effect of 3O-C12-HSL on mitochondria may represent one of the events in the interaction between P. aeruginosa and host mitochondria and may have an impact on the pathogens strategy to hijack host cell activities to support their own survival and spreading.

6.
PLoS One ; 13(1): e0191067, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29346396

RESUMEN

Micro RNAs (miRNAs) are promising disease biomarkers due to their high stability. Their expression in serum is altered in type 1 diabetes, but whether deviations exist in individuals with high risk for type 1 diabetes remains unexplored. We therefore assessed serum miRNAs in high-risk individuals (n = 21) positive for multiple islet autoantibodies, age-matched healthy children (n = 17) and recent-onset type 1 diabetes patients (n = 8), using Serum/Plasma Focus microRNA PCR Panels from Exiqon. The miRNA levels in the high-risk group were similar to healthy controls, and no specific miRNA profile was identified for the high-risk group. However, serum miRNAs appeared to reflect glycemic status and ongoing islet autoimmunity in high-risk individuals, since several miRNAs were associated to glucose homeostasis and autoantibody titers. High-risk individuals progressing to clinical disease after the sampling could not be clearly distinguished from non-progressors, while miRNA expression in the type 1 diabetes group deviated significantly from high-risk individuals and healthy controls, perhaps explained by major metabolic disturbances around the time of diagnosis.


Asunto(s)
Autoanticuerpos/sangre , Diabetes Mellitus Tipo 1/sangre , Glucosa/metabolismo , Islotes Pancreáticos/inmunología , MicroARNs/sangre , Glucemia/metabolismo , Niño , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Femenino , Homeostasis , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Factores de Riesgo
7.
Pediatr Diabetes ; 13(3): 244-50, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21848927

RESUMEN

AIMS: We have previously shown that two injections of glutamic acid decarboxylase formulated in alum (GAD-alum) preserved residual insulin secretion in children and adolescents with recent onset type 1 diabetes (T1D), and was accompanied by increased GAD autoantibody (GADA) titers. The aim of this study was to investigate whether GAD-alum treatment affected the GADA epitope pattern. METHODS: Serum samples from patients treated with GAD-alum (n = 33) or placebo (n = 27), at baseline, 1, 3, 9, and 15 months after the initial injection, were tested for their binding capacity to specific GADA epitopes in an epitope-specific radioligand binding assay with six recombinant Fab (rFab) (b96.11, DPA, DPD, MICA3, b78, and N-GAD(65) mAb). RESULTS: No significant differences in variability of binding to any of the tested rFab were observed from baseline to 15 months. There was a sustained low binding of GADA to the b78- and N-GAD(65) mAb-defined epitopes, often recognized by GADA in patients with stiff person syndrome (SPS) and seldom in T1D patients. However, binding of GADA to the T1D-associated b96.11-defined epitope increased between baseline and 3 months in GAD-alum (-8.1%, min -72.4%, max 39.6%) compared to placebo patients (1.5%, min -28.3%, max 28.6%) (p = 0.02). Subsequently, the b96.11-defined epitope recognition returned to levels similar to that observed at baseline. CONCLUSIONS: GAD-alum injections did not affect binding of GADA to SPS-related epitopes, further supporting the safety of the treatment. There were no changes in GADA epitope specificity to the T1D-related epitopes, except for a temporarily increased binding to one of the tested epitopes.


Asunto(s)
Compuestos de Alumbre/uso terapéutico , Autoanticuerpos/inmunología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/inmunología , Glutamato Descarboxilasa/inmunología , Glutamato Descarboxilasa/uso terapéutico , Adolescente , Autoanticuerpos/sangre , Niño , Epítopos/inmunología , Humanos
8.
Clin Immunol ; 137(1): 31-40, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20580618

RESUMEN

We have previously shown that two injections of 20 µg GAD-alum to recent onset type 1 diabetic children induced GADA levels in parallel to preservation of insulin secretion. Here we investigated if boosted GADA induced changes in IgG1, 2, 3 and 4 subclass distributions or affected GAD(65) enzyme activity. We further studied the specific effect of GAD-alum through analyses of IA-2A, tetanus toxoid and total IgE antibodies. Serum from children receiving GAD-alum or placebo was collected pre-treatment and after 3, 9, 15 and 21 months. At 3 months a reduced percentage of IgG1 and increased IgG3/IgG4 were detected in GAD-alum treated. Further, IA-2A, IgE and tetanus toxoid antibodies, as well as GAD(65) enzyme activity, were unaffected confirming the specific effect of treatment. In the GAD-alum group, higher pre-treatment GADA were associated to more pronounced C-peptide preservation. The induced IgG3/IgG4 and reduced IgG1 suggest a Th2 deviation of the immune response.


Asunto(s)
Compuestos de Alumbre/uso terapéutico , Autoanticuerpos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/terapia , Glutamato Descarboxilasa/metabolismo , Glutamato Descarboxilasa/uso terapéutico , Inmunidad Humoral/inmunología , Inmunoglobulina G/inmunología , Inmunoterapia Activa/métodos , Adyuvantes Inmunológicos/uso terapéutico , Adolescente , Anticuerpos/sangre , Anticuerpos/inmunología , Área Bajo la Curva , Autoanticuerpos/sangre , Biocatálisis/efectos de los fármacos , Péptido C/sangre , Niño , Diabetes Mellitus Tipo 1/enzimología , Método Doble Ciego , Glutamato Descarboxilasa/inmunología , Humanos , Sueros Inmunes/inmunología , Sueros Inmunes/farmacología , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , Toxoide Tetánico/inmunología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA