Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Glia ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899762

RESUMEN

The neurometabolic disorder succinic semialdehyde dehydrogenase (SSADH) deficiency leads to great neurochemical imbalances and severe neurological manifestations. The cause of the disease is loss of function of the enzyme SSADH, leading to impaired metabolism of the principal inhibitory neurotransmitter GABA. Despite the known identity of the enzymatic deficit, the underlying pathology of SSADH deficiency remains unclear. To uncover new mechanisms of the disease, we performed an untargeted integrative analysis of cerebral protein expression, functional metabolism, and lipid composition in a genetic mouse model of SSADH deficiency (ALDH5A1 knockout mice). Our proteomic analysis revealed a clear regional vulnerability, as protein alterations primarily manifested in the hippocampus and cerebral cortex of the ALDH5A1 knockout mice. These regions displayed aberrant expression of proteins linked to amino acid homeostasis, mitochondria, glial function, and myelination. Stable isotope tracing in acutely isolated brain slices demonstrated an overall maintained oxidative metabolism of glucose, but a selective decrease in astrocyte metabolic activity in the cerebral cortex of ALDH5A1 knockout mice. In contrast, an elevated capacity of oxidative glutamine metabolism was observed in the ALDH5A1 knockout brain, which may serve as a neuronal compensation of impaired astrocyte glutamine provision. In addition to reduced expression of critical oligodendrocyte proteins, a severe depletion of myelin-enriched sphingolipids was found in the brains of ALDH5A1 knockout mice, suggesting degeneration of myelin. Altogether, our study highlights that impaired astrocyte and oligodendrocyte function is intimately linked to SSADH deficiency pathology, suggesting that selective targeting of glial cells may hold therapeutic potential in this disease.

2.
Nat Commun ; 14(1): 4348, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468457

RESUMEN

RNA-binding proteins (RBPs) are key players regulating RNA processing and are associated with disorders ranging from cancer to neurodegeneration. Here, we present a proteomics workflow for large-scale identification of RBPs and their RNA-binding regions in the mammalian brain identifying 526 RBPs. Analysing brain tissue from males of the Huntington's disease (HD) R6/2 mouse model uncovered differential RNA-binding of the alternative splicing regulator RBM5. Combining several omics workflows, we show that RBM5 binds differentially to transcripts enriched in pathways of neurodegeneration in R6/2 brain tissue. We further find these transcripts to undergo changes in splicing and demonstrate that RBM5 directly regulates these changes in human neurons derived from embryonic stem cells. Finally, we reveal that RBM5 interacts differently with several known huntingtin interactors and components of huntingtin aggregates. Collectively, we demonstrate the applicability of our method for capturing RNA interactor dynamics in the contexts of tissue and disease.


Asunto(s)
Enfermedad de Huntington , Ratones , Masculino , Animales , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Encéfalo/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Modelos Animales de Enfermedad , Mamíferos/genética , ARN/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ratones Transgénicos , Proteínas de Unión al ADN/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Supresoras de Tumor/genética
3.
J Neurochem ; 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949663

RESUMEN

Ca2+ /calmodulin-dependent protein kinase II alpha (CaMKIIα) is a key regulator of neuronal signaling and synaptic plasticity. Synaptic activity and neurotransmitter homeostasis are closely coupled to the energy metabolism of both neurons and astrocytes. However, whether CaMKIIα function is implicated in brain energy and neurotransmitter metabolism remains unclear. Here, we explored the metabolic consequences of CaMKIIα deletion in the cerebral cortex using a genetic CaMKIIα knockout (KO) mouse. Energy and neurotransmitter metabolism was functionally investigated in acutely isolated cerebral cortical slices using stable 13 C isotope tracing, whereas the metabolic function of synaptosomes was assessed by the rates of glycolytic activity and mitochondrial respiration. The oxidative metabolism of [U-13 C]glucose was extensively reduced in cerebral cortical slices of the CaMKIIα KO mice. In contrast, metabolism of [1,2-13 C]acetate, primarily reflecting astrocyte metabolism, was unaffected. Cellular uptake, and subsequent metabolism, of [U-13 C]glutamate was decreased in cerebral cortical slices of CaMKIIα KO mice, whereas uptake and metabolism of [U-13 C]GABA were unaffected, suggesting selective metabolic impairments of the excitatory system. Synaptic metabolic function was maintained during resting conditions in isolated synaptosomes from CaMKIIα KO mice, but both the glycolytic and mitochondrial capacities became insufficient when the synaptosomes were metabolically challenged. Collectively, this study shows that global deletion of CaMKIIα significantly impairs cellular energy and neurotransmitter metabolism, particularly of neurons, suggesting a metabolic role of CaMKIIα signaling in the brain.

4.
Cell Death Dis ; 12(11): 954, 2021 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-34657143

RESUMEN

Alzheimer's disease (AD) is an unremitting neurodegenerative disorder characterized by cerebral amyloid-ß (Aß) accumulation and gradual decline in cognitive function. Changes in brain energy metabolism arise in the preclinical phase of AD, suggesting an important metabolic component of early AD pathology. Neurons and astrocytes function in close metabolic collaboration, which is essential for the recycling of neurotransmitters in the synapse. However, this crucial metabolic interplay during the early stages of AD development has not been sufficiently investigated. Here, we provide an integrative analysis of cellular metabolism during the early stages of Aß accumulation in the cerebral cortex and hippocampus of the 5xFAD mouse model of AD. Our electrophysiological examination revealed an increase in spontaneous excitatory signaling in the 5xFAD hippocampus. This hyperactive neuronal phenotype coincided with decreased hippocampal tricarboxylic acid (TCA) cycle metabolism mapped by stable 13C isotope tracing. Particularly, reduced astrocyte TCA cycle activity and decreased glutamine synthesis led to hampered neuronal GABA synthesis in the 5xFAD hippocampus. In contrast, the cerebral cortex of 5xFAD mice displayed an elevated capacity for oxidative glucose metabolism, which may suggest a metabolic compensation in this brain region. We found limited changes when we explored the brain proteome and metabolome of the 5xFAD mice, supporting that the functional metabolic disturbances between neurons and astrocytes are early primary events in AD pathology. In addition, synaptic mitochondrial and glycolytic function was selectively impaired in the 5xFAD hippocampus, whereas non-synaptic mitochondrial function was maintained. These findings were supported by ultrastructural analyses demonstrating disruptions in mitochondrial morphology, particularly in the 5xFAD hippocampus. Collectively, our study reveals complex regional and cell-specific metabolic adaptations in the early stages of amyloid pathology, which may be fundamental for the progressing synaptic dysfunctions in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Astrocitos/metabolismo , Hipocampo/patología , Sinapsis/metabolismo , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Ciclo del Ácido Cítrico , Modelos Animales de Enfermedad , Metabolismo Energético , Glucosa/metabolismo , Glutamina/metabolismo , Glucólisis , Hipocampo/metabolismo , Masculino , Metaboloma , Ratones Transgénicos , Mitocondrias/patología , Mitocondrias/ultraestructura , Neurotransmisores/metabolismo , Proteoma/metabolismo , Transducción de Señal , Sinapsis/ultraestructura
5.
Biol Psychiatry ; 88(6): 500-511, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32653109

RESUMEN

BACKGROUND: Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by epigenetic silencing of FMR1 and loss of FMRP expression. Efforts to understand the molecular underpinnings of the disease have been largely performed in rodent or nonisogenic settings. A detailed examination of the impact of FMRP loss on cellular processes and neuronal properties in the context of isogenic human neurons remains lacking. METHODS: Using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 to introduce indels in exon 3 of FMR1, we generated an isogenic human pluripotent stem cell model of FXS that shows complete loss of FMRP expression. We generated neuronal cultures and performed genome-wide transcriptome and proteome profiling followed by functional validation of key dysregulated processes. We further analyzed neurodevelopmental and neuronal properties, including neurite length and neuronal activity, using multielectrode arrays and patch clamp electrophysiology. RESULTS: We showed that the transcriptome and proteome profiles of isogenic FMRP-deficient neurons demonstrate perturbations in synaptic transmission, neuron differentiation, cell proliferation and ion transmembrane transporter activity pathways, and autism spectrum disorder-associated gene sets. We uncovered key deficits in FMRP-deficient cells demonstrating abnormal neural rosette formation and neural progenitor cell proliferation. We further showed that FMRP-deficient neurons exhibit a number of additional phenotypic abnormalities, including neurite outgrowth and branching deficits and impaired electrophysiological network activity. These FMRP-deficient related impairments have also been validated in additional FXS patient-derived human-induced pluripotent stem cell neural cells. CONCLUSIONS: Using isogenic human pluripotent stem cells as a model to investigate the pathophysiology of FXS in human neurons, we reveal key neural abnormalities arising from the loss of FMRP.


Asunto(s)
Trastorno del Espectro Autista , Síndrome del Cromosoma X Frágil , Células Madre Pluripotentes Inducidas , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Humanos , Neuronas
6.
Cell Chem Biol ; 26(9): 1295-1305.e6, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31353319

RESUMEN

Aberrant activation of caspase-6 (C6) in the absence of other hallmarks of apoptosis has been demonstrated in cells and tissues from patients with Huntington disease (HD) and animal models. C6 activity correlates with disease progression in patients with HD and the cleavage of mutant huntingtin (mHTT) protein is thought to strongly contribute to disease pathogenesis. Here we show that the mHTT1-586 fragment generated by C6 cleavage interacts with the zymogen form of the enzyme, stabilizing a conformation that contains an active site and is prone to full activation. This shift toward enhanced activity can be prevented by a small-molecule inhibitor that blocks the interaction between C6 and mHTT1-586. Molecular docking studies suggest that the inhibitor binds an allosteric site in the C6 zymogen. The interaction of mHTT1-586 with C6 may therefore promote a self-reinforcing, feedforward cycle of C6 zymogen activation and mHTT cleavage driving HD pathogenesis.


Asunto(s)
Caspasa 6/metabolismo , Proteína Huntingtina/genética , Enfermedad de Huntington/metabolismo , Regulación Alostérica/genética , Animales , Apoptosis , Células COS , Caspasa 6/fisiología , Chlorocebus aethiops , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/patología , Simulación del Acoplamiento Molecular/métodos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo
7.
Cell Mol Life Sci ; 76(12): 2449-2461, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30830240

RESUMEN

Huntington's disease (HD) is a hereditary and fatal disease causing profound neurodegeneration. Deficits in cerebral energy and neurotransmitter metabolism have been suggested to play a central role in the neuronal dysfunction and death associated with HD. The branched-chain amino acids (BCAAs), leucine, isoleucine and valine, are important for cerebral nitrogen homeostasis, neurotransmitter recycling and can be utilized as energy substrates in the tricarboxylic acid (TCA) cycle. Reduced levels of BCAAs in HD have been validated by several reports. However, it is still unknown how cerebral BCAA metabolism is regulated in HD. Here we investigate the metabolism of leucine and isoleucine in the R6/2 mouse model of HD. Acutely isolated cerebral cortical and striatal slices of control and R6/2 mice were incubated in media containing 15N- or 13C-labeled leucine or isoleucine and slice extracts were analyzed by gas chromatography-mass spectrometry (GC-MS) to determine isotopic enrichment of derived metabolites. Elevated BCAA transamination was found from incubations with [15N]leucine and [15N]isoleucine, in both cerebral cortical and striatal slices of R6/2 mice compared to controls. Metabolism of [U-13C]leucine and [U-13C]isoleucine, entering oxidative metabolism as acetyl CoA, was maintained in R6/2 mice. However, metabolism of [U-13C]isoleucine, entering the TCA cycle as succinyl CoA, was elevated in both cerebral cortical and striatal slices of R6/2 mice, suggesting enhanced metabolic flux via this anaplerotic pathway. To support the metabolic studies, expression of enzymes in the BCAA metabolic pathway was assessed from a proteomic resource. Several enzymes related to BCAA metabolism were found to exhibit augmented expression in the R6/2 brain, particularly related to isoleucine metabolism, suggesting an increase in the BCAA metabolic machinery. Our results show that the capacity for cerebral BCAA metabolism, predominantly of isoleucine, is amplified in the R6/2 brain and indicates that perturbations in cerebral BCAA homeostasis could have functional consequences for HD pathology.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Encéfalo/metabolismo , Enfermedad de Huntington/metabolismo , Aminoácidos de Cadena Ramificada/análisis , Animales , Encéfalo/patología , Química Encefálica , Modelos Animales de Enfermedad , Enfermedad de Huntington/patología , Masculino , Redes y Vías Metabólicas , Ratones
8.
Sci Transl Med ; 10(461)2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30282695

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin (HTT) protein, resulting in acquisition of toxic functions. Previous studies have shown that lowering mutant HTT has the potential to be broadly beneficial. We previously identified HTT single-nucleotide polymorphisms (SNPs) tightly linked to the HD mutation and developed antisense oligonucleotides (ASOs) targeting HD-SNPs that selectively suppress mutant HTT. We tested allele-specific ASOs in a mouse model of HD. Both early and late treatment reduced cognitive and behavioral impairments in mice. To determine the translational potential of the treatment, we examined the effect of ASO administration on HTT brain expression in nonhuman primates. The treatment induced robust HTT suppression throughout the cortex and limbic system, areas implicated in cognition and psychiatric function. The results suggest that ASOs specifically targeting mutated HTT might have therapeutic effects on HD-mediated cognitive impairments.


Asunto(s)
Cognición , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/fisiopatología , Animales , Ansiedad/complicaciones , Ansiedad/patología , Ansiedad/fisiopatología , Atrofia/patología , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Femenino , Humanos , Enfermedad de Huntington/complicaciones , Enfermedad de Huntington/patología , Sistema Límbico/patología , Masculino , Proteínas Mutantes/metabolismo , Oligonucleótidos Antisentido/farmacología , Primates
9.
Nat Commun ; 9(1): 2456, 2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29942033

RESUMEN

Small ubiquitin-like modifiers (SUMOs) are post-translational modifications that play crucial roles in most cellular processes. While methods exist to study exogenous SUMOylation, large-scale characterization of endogenous SUMO2/3 has remained technically daunting. Here, we describe a proteomics approach facilitating system-wide and in vivo identification of lysines modified by endogenous and native SUMO2. Using a peptide-level immunoprecipitation enrichment strategy, we identify 14,869 endogenous SUMO2/3 sites in human cells during heat stress and proteasomal inhibition, and quantitatively map 1963 SUMO sites across eight mouse tissues. Characterization of the SUMO equilibrium highlights striking differences in SUMO metabolism between cultured cancer cells and normal tissues. Targeting preferences of SUMO2/3 vary across different organ types, coinciding with markedly differential SUMOylation states of all enzymes involved in the SUMO conjugation cascade. Collectively, our systemic investigation details the SUMOylation architecture across species and organs and provides a resource of endogenous SUMOylation sites on factors important in organ-specific functions.


Asunto(s)
Proteoma/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/fisiología , Ubiquitinas/metabolismo , Animales , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias/patología
10.
Cell Rep ; 23(7): 2211-2224, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29768217

RESUMEN

Huntington's disease is a fatal neurodegenerative disease, where dysfunction and loss of striatal and cortical neurons are central to the pathogenesis of the disease. Here, we integrated quantitative studies to investigate the underlying mechanisms behind HD pathology in a systems-wide manner. To this end, we used state-of-the-art mass spectrometry to establish a spatial brain proteome from late-stage R6/2 mice and compared this with wild-type littermates. We observed altered expression of proteins in pathways related to energy metabolism, synapse function, and neurotransmitter homeostasis. To support these findings, metabolic 13C labeling studies confirmed a compromised astrocytic metabolism and regulation of glutamate-GABA-glutamine cycling, resulting in impaired release of glutamine and GABA synthesis. In recent years, increasing attention has been focused on the role of astrocytes in HD, and our data support that therapeutic strategies to improve astrocytic glutamine homeostasis may help ameliorate symptoms in HD.


Asunto(s)
Astrocitos/metabolismo , Enfermedad de Huntington/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Acetatos/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Metabolismo Energético , Femenino , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Humanos , Masculino , Ratones Transgénicos , Neurotransmisores/metabolismo , Proteoma/metabolismo
11.
Acta Neuropathol Commun ; 6(1): 16, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29510748

RESUMEN

Huntington disease (HD) is caused by the expression of mutant huntingtin (mHTT) bearing a polyglutamine expansion. In HD, mHTT accumulation is accompanied by a dysfunction in basal autophagy, which manifests as specific defects in cargo loading during selective autophagy. Here we show that the expression of mHTT resistant to proteolysis at the caspase cleavage site D586 (C6R mHTT) increases autophagy, which may be due to its increased binding to the autophagy adapter p62. This is accompanied by faster degradation of C6R mHTT in vitro and a lack of mHTT accumulation the C6R mouse model with age. These findings may explain the previously observed neuroprotective properties of C6R mHTT. As the C6R mutation cannot be easily translated into a therapeutic approach, we show that a scheduled feeding paradigm is sufficient to lower mHTT levels in YAC128 mice expressing cleavable mHTT. This is consistent with a previous model, where the presence of cleavable mHTT impairs basal autophagy, while fasting-induced autophagy remains functional. In HD, mHTT clearance and autophagy may become increasingly impaired as a function of age and disease stage, because of gradually increased activity of mHTT-processing enzymes. Our findings imply that mHTT clearance could be enhanced by a regulated dietary schedule that promotes autophagy.


Asunto(s)
Autofagia/fisiología , Ayuno/fisiología , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/terapia , Proteolisis , Envejecimiento/metabolismo , Animales , Células COS , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Humanos , Proteína Huntingtina/genética , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Transgénicos , Mutación , Neuronas/metabolismo , Neuronas/patología , Distribución Aleatoria
12.
Hum Mol Genet ; 26(6): 1115-1132, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28104789

RESUMEN

Huntington disease (HD) is a neurodegenerative disease caused by a mutation in the huntingtin (HTT) gene. HTT is a large protein, interacts with many partners and is involved in many cellular pathways, which are perturbed in HD. Therapies targeting HTT directly are likely to provide the most global benefit. Thus there is a need for preclinical models of HD recapitulating human HTT genetics. We previously generated a humanized mouse model of HD, Hu97/18, by intercrossing BACHD and YAC18 mice with knockout of the endogenous mouse HD homolog (Hdh). Hu97/18 mice recapitulate the genetics of HD, having two full-length, genomic human HTT transgenes heterozygous for the HD mutation and polymorphisms associated with HD in populations of Caucasian descent. We have now generated a companion model, Hu128/21, by intercrossing YAC128 and BAC21 mice on the Hdh-/- background. Hu128/21 mice have two full-length, genomic human HTT transgenes heterozygous for the HD mutation and polymorphisms associated with HD in populations of East Asian descent and in a minority of patients from other ethnic groups. Hu128/21 mice display a wide variety of HD-like phenotypes that are similar to YAC128 mice. Additionally, both transgenes in Hu128/21 mice match the human HTT exon 1 reference sequence. Conversely, the BACHD transgene carries a floxed, synthetic exon 1 sequence. Hu128/21 mice will be useful for investigations of human HTT that cannot be addressed in Hu97/18 mice, for developing therapies targeted to exon 1, and for preclinical screening of personalized HTT lowering therapies in HD patients of East Asian descent.


Asunto(s)
Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Mutación/genética , Alelos , Animales , Modelos Animales de Enfermedad , Exones/genética , Heterocigoto , Humanos , Enfermedad de Huntington/patología , Ratones , Ratones Transgénicos , Fenotipo
13.
Cell Death Differ ; 24(3): 433-444, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27911442

RESUMEN

Caspase-6 (CASP6) has an important role in axonal degeneration during neuronal apoptosis and in the neurodegenerative diseases Alzheimer and Huntington disease. Decreasing CASP6 activity may help to restore neuronal function in these and other diseases such as stroke and ischemia, where increased CASP6 activity has been implicated. The key to finding approaches to decrease CASP6 activity is a deeper understanding of the mechanisms regulating CASP6 activation. We show that CASP6 is posttranslationally palmitoylated by the palmitoyl acyltransferase HIP14 and that the palmitoylation of CASP6 inhibits its activation. Palmitoylation of CASP6 is decreased both in Hip14-/- mice, where HIP14 is absent, and in YAC128 mice, a model of Huntington disease, where HIP14 is dysfunctional and where CASP6 activity is increased. Molecular modeling suggests that palmitoylation of CASP6 may inhibit its activation via steric blockage of the substrate-binding groove and inhibition of CASP6 dimerization, both essential for CASP6 function. Our studies identify palmitoylation as a novel CASP6 modification and as a key regulator of CASP6 activity.


Asunto(s)
Aciltransferasas/metabolismo , Caspasa 6/metabolismo , Aciltransferasas/deficiencia , Aciltransferasas/genética , Animales , Encéfalo/metabolismo , Células COS , Caspasa 6/genética , Chlorocebus aethiops , Dimerización , Modelos Animales de Enfermedad , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Inmunoprecipitación , Lipoilación , Ratones , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Especificidad por Sustrato
14.
Mol Ther ; 23(11): 1759-1771, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26201449

RESUMEN

Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in the Huntingtin gene (HTT). Heterozygous polymorphisms in cis with the mutation allow for allele-specific suppression of the pathogenic HTT transcript as a therapeutic strategy. To prioritize target selection, precise heterozygosity estimates are needed across diverse HD patient populations. Here we present the first comprehensive investigation of all common target alleles across the HTT gene, using 738 reference haplotypes from the 1000 Genomes Project and 2364 haplotypes from HD patients and relatives in Canada, Sweden, France, and Italy. The most common HD haplotypes (A1, A2, and A3a) define mutually exclusive sets of polymorphisms for allele-specific therapy in the greatest number of patients. Across all four populations, a maximum of 80% are treatable using these three target haplotypes. We identify a novel deletion found exclusively on the A1 haplotype, enabling potent and selective silencing of mutant HTT in approximately 40% of the patients. Antisense oligonucleotides complementary to the deletion reduce mutant A1 HTT mRNA by 78% in patient cells while sparing wild-type HTT expression. By suppressing specific haplotypes on which expanded CAG occurs, we demonstrate a rational approach to the development of allele-specific therapy for a monogenic disorder.


Asunto(s)
Terapia Genética/métodos , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Proteínas del Tejido Nervioso/genética , Alelos , Expresión Génica , Marcación de Gen , Haplotipos/genética , Heterocigoto , Humanos , Proteína Huntingtina , Mutación INDEL/genética , Oligonucleótidos Antisentido/genética , Polimorfismo de Nucleótido Simple , ARN Mensajero/genética , Expansión de Repetición de Trinucleótido/genética , Población Blanca/genética
15.
PLoS One ; 9(9): e107434, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25207939

RESUMEN

Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder.


Asunto(s)
Terapia Genética , Enfermedad de Huntington/terapia , Mutación , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Neuronas/metabolismo , Oligonucleótidos Antisentido/genética , Alelos , Animales , Secuencia de Bases , Diseño de Fármacos , Embrión de Mamíferos , Femenino , Expresión Génica , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Oligonucleótidos Antisentido/química , Polimorfismo de Nucleótido Simple , Cultivo Primario de Células , Interferencia de ARN , Relación Estructura-Actividad
16.
Mol Ther ; 22(12): 2093-2106, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25101598

RESUMEN

Huntington disease (HD) is a dominant, genetic neurodegenerative disease characterized by progressive loss of voluntary motor control, psychiatric disturbance, and cognitive decline, for which there is currently no disease-modifying therapy. HD is caused by the expansion of a CAG tract in the huntingtin (HTT) gene. The mutant HTT protein (muHTT) acquires toxic functions, and there is significant evidence that muHTT lowering would be therapeutically efficacious. However, the wild-type HTT protein (wtHTT) serves vital functions, making allele-specific muHTT lowering strategies potentially safer than nonselective strategies. CAG tract expansion is associated with single nucleotide polymorphisms (SNPs) that can be targeted by gene silencing reagents such as antisense oligonucleotides (ASOs) to accomplish allele-specific muHTT lowering. Here we evaluate ASOs targeted to HD-associated SNPs in acute in vivo studies including screening, distribution, duration of action and dosing, using a humanized mouse model of HD, Hu97/18, that is heterozygous for the targeted SNPs. We have identified four well-tolerated lead ASOs that potently and selectively silence muHTT at a broad range of doses throughout the central nervous system for 16 weeks or more after a single intracerebroventricular (ICV) injection. With further validation, these ASOs could provide a therapeutic option for individuals afflicted with HD.


Asunto(s)
Encéfalo/patología , Enfermedad de Huntington/terapia , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/genética , Oligonucleótidos Antisentido/administración & dosificación , Tionucleótidos/administración & dosificación , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Silenciador del Gen , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Inyecciones , Ratones , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Proteínas del Tejido Nervioso/metabolismo , Oligonucleótidos Antisentido/farmacología , Polimorfismo de Nucleótido Simple , Ratas , Ratas Sprague-Dawley , Tionucleótidos/farmacología
17.
Proc Natl Acad Sci U S A ; 111(8): 3032-7, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24516159

RESUMEN

Oxidative stress plays a key role in late onset diseases including cancer and neurodegenerative diseases such as Huntington disease. Therefore, uncovering regulators of the antioxidant stress responses is important for understanding the course of these diseases. Indeed, the nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of the cellular antioxidative stress response, is deregulated in both cancer and neurodegeneration. Similar to NRF2, the tumor suppressor Homologous to the E6-AP Carboxyl Terminus (HECT) domain and Ankyrin repeat containing E3 ubiquitin-protein ligase 1 (HACE1) plays a protective role against stress-induced tumorigenesis in mice, but its roles in the antioxidative stress response or its involvement in neurodegeneration have not been investigated. To this end we examined Hace1 WT and KO mice and found that Hace1 KO animals exhibited increased oxidative stress in brain and that the antioxidative stress response was impaired. Moreover, HACE1 was found to be essential for optimal NRF2 activation in cells challenged with oxidative stress, as HACE1 depletion resulted in reduced NRF2 activity, stability, and protein synthesis, leading to lower tolerance against oxidative stress triggers. Strikingly, we found a reduction of HACE1 levels in the striatum of Huntington disease patients, implicating HACE1 in the pathology of Huntington disease. Moreover, ectopic expression of HACE1 in striatal neuronal progenitor cells provided protection against mutant Huntingtin-induced redox imbalance and hypersensitivity to oxidative stress, by augmenting NRF2 functions. These findings reveal that the tumor suppressor HACE1 plays a role in the NRF2 antioxidative stress response pathway and in neurodegeneration.


Asunto(s)
Enfermedad de Huntington/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Western Blotting , Fraccionamiento Celular , Cuerpo Estriado/metabolismo , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Proteína Huntingtina , Ratones , Proteínas del Tejido Nervioso/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Hum Mol Genet ; 23(3): 717-29, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24070868

RESUMEN

Activation of caspase-6 in the striatum of both presymptomatic and affected persons with Huntington's disease (HD) is an early event in the disease pathogenesis. However, little is known about the role of caspase-6 outside the central nervous system (CNS) and whether caspase activation might play a role in the peripheral phenotypes, such as muscle wasting observed in HD. We assessed skeletal muscle tissue from HD patients and well-characterized mouse models of HD. Cleavage of the caspase-6 specific substrate lamin A is significantly increased in skeletal muscle obtained from HD patients as well as in muscle tissues from two different HD mouse models. p53, a transcriptional activator of caspase-6, is upregulated in neuronal cells and tissues expressing mutant huntingtin. Activation of p53 leads to a dramatic increase in levels of caspase-6 mRNA, caspase-6 activity and cleavage of lamin A. Using mouse embryonic fibroblasts (MEFs) from YAC128 mice, we show that this increase in caspase-6 activity can be mitigated by pifithrin-α (pifα), an inhibitor of p53 transcriptional activity, but not through the inhibition of p53's mitochondrial pro-apoptotic function. Remarkably, the p53-mediated increase in caspase-6 expression and activation is exacerbated in cells and tissues of both neuronal and peripheral origin expressing mutant huntingtin (Htt). These findings suggest that the presence of the mutant Htt protein enhances p53 activity and lowers the apoptotic threshold, which activates caspase-6. Furthermore, these results suggest that this pathway is activated both within and outside the CNS in HD and may contribute to both loss of CNS neurons and muscle atrophy.


Asunto(s)
Caspasa 6/metabolismo , Músculo Esquelético/metabolismo , Proteínas del Tejido Nervioso/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Benzotiazoles/farmacología , Caspasa 6/genética , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Lamina Tipo A/metabolismo , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/patología , Mutación , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/patología , Tolueno/análogos & derivados , Tolueno/farmacología , Proteína p53 Supresora de Tumor/genética
19.
Nucleic Acids Res ; 41(21): 9634-50, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23963702

RESUMEN

Autosomal dominant diseases such as Huntington's disease (HD) are caused by a gain of function mutant protein and/or RNA. An ideal treatment for these diseases is to selectively suppress expression of the mutant allele while preserving expression of the wild-type variant. RNase H active antisense oligonucleotides (ASOs) or small interfering RNAs can achieve allele selective suppression of gene expression by targeting single nucleotide polymorphisms (SNPs) associated with the repeat expansion. ASOs have been previously shown to discriminate single nucleotide changes in targeted RNAs with ∼5-fold selectivity. Based on RNase H enzymology, we enhanced single nucleotide discrimination by positional incorporation of chemical modifications within the oligonucleotide to limit RNase H cleavage of the non-targeted transcript. The resulting oligonucleotides demonstrate >100-fold discrimination for a single nucleotide change at an SNP site in the disease causing huntingtin mRNA, in patient cells and in a completely humanized mouse model of HD. The modified ASOs were also well tolerated after injection into the central nervous system of wild-type animals, suggesting that their tolerability profile is suitable for advancement as potential allele-selective HD therapeutics. Our findings lay the foundation for efficient allele-selective downregulation of gene expression using ASOs-an outcome with broad application to HD and other dominant genetic disorders.


Asunto(s)
Alelos , Enfermedad de Huntington/genética , Proteínas del Tejido Nervioso/genética , Oligonucleótidos Antisentido/química , Polimorfismo de Nucleótido Simple , Animales , Emparejamiento Base , Encéfalo/metabolismo , Células Cultivadas , Regulación hacia Abajo , Flúor/química , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Ratones , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , Ratas , Ratas Sprague-Dawley , Ribonucleasa H/metabolismo
20.
Hum Mol Genet ; 22(1): 18-34, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23001568

RESUMEN

Silencing the mutant huntingtin gene (muHTT) is a direct and simple therapeutic strategy for the treatment of Huntington disease (HD) in principle. However, targeting the HD mutation presents challenges because it is an expansion of a common genetic element (a CAG tract) that is found throughout the genome. Moreover, the HTT protein is important for neuronal health throughout life, and silencing strategies that also reduce the wild-type HTT allele may not be well tolerated during the long-term treatment of HD. Several HTT silencing strategies are in development that target genetic sites in HTT that are outside of the CAG expansion, including HD mutation-linked single-nucleotide polymorphisms and the HTT promoter. Preclinical testing of these genetic therapies has required the development of a new mouse model of HD that carries these human-specific genetic targets. To generate a fully humanized mouse model of HD, we have cross-bred BACHD and YAC18 on the Hdh(-/-) background. The resulting line, Hu97/18, is the first murine model of HD that fully genetically recapitulates human HD having two human HTT genes, no mouse Hdh genes and heterozygosity of the HD mutation. We find that Hu97/18 mice display many of the behavioral changes associated with HD including motor, psychiatric and cognitive deficits, as well as canonical neuropathological abnormalities. This mouse line will be useful for gaining additional insights into the disease mechanisms of HD as well as for testing genetic therapies targeting human HTT.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Huntington/genética , Animales , Silenciador del Gen , Humanos , Enfermedad de Huntington/psicología , Ratones , Ratones Transgénicos , Mutación , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Prueba de Desempeño de Rotación con Aceleración Constante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA